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Numerical approximations and computational modeling of problems from Biology and 
Materials Science often deal with partial differential equations with varying coefficients 
and domains with irregular geometry. The challenge here is to design an efficient 
and accurate numerical method that can resolve properties of solutions in different 
domains/subdomains, while handling the arbitrary geometries of the domains. In this work, 
we consider 2D elliptic models with material interfaces and develop efficient high-order 
accurate methods based on Difference Potentials for such problems.
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1. Introduction

Highly-accurate numerical methods (see [38], etc.) that can efficiently handle irregular geometry and interface problems 
(usually described by mathematical models that have input data and solutions with discontinuities/non-smoothness across 
the interfaces), are crucial for the resolution of different temporal and spatial scales of physical, biological, biomedical prob-
lems, and problems from material sciences (models for composite materials, fluids, chemotaxis models, biofilms), to name 
a few. The major challenge here is to design a robust method that accurately captures certain properties of the solutions 
in different domains/subdomains (different regularity of the solutions in the domains, positivity, etc.), while handling the 
arbitrary geometries of the domains/subdomains. Moreover, any standard numerical method designed for smooth solutions, 
in general and in any dimension, will fail to produce accurate solutions to interface problems due to discontinuities in the 
model’s parameters/solutions.

There is extensive literature that addresses problems in domains with irregular geometries and interface problems. 
Among finite-difference based methods for such problems are the Immersed Boundary Method (IB) [25,26], etc., the Im-
mersed Interface Method (IIM) [15–17], etc., the Ghost Fluid Method (GFM) [12,19,18], etc., the Matched Interface and 
Boundary Method (MIB) [45,43,46], etc., and the method based on the Integral Equations approach, [21], etc. Among the 
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finite-element methods for interface problems are [3,6,37,24,44,42,13], etc. These methods are sharp interface methods that 
have been employed to solve problems in science and engineering. For a detailed review of the subject the reader can 
consult [17]. However, in spite of great advances in the past 40 years in the numerical methods for problems in arbi-
trary domains and/or interface problems, it is still a challenge to develop efficient numerical algorithms that can deliver 
high-order accuracy in space (higher than second-order), and that can handle general boundary/interface conditions.

Therefore, we consider here an approach based on Difference Potentials Method (DPM) [31,32]. The DPM on its own, or 
in combination with other numerical methods, is an efficient technique for the numerical solution, as well as for the discrete 
modeling of interior and exterior boundary value problems in domains with arbitrary geometry (see for example, [31,32,20,
33,39,22,34,35,7,8,10,1,2]). The main idea of DPM is to reduce uniquely solvable and well-posed boundary value problems to 
pseudo-differential boundary equations with projections. Methods based on Difference Potentials introduce computationally 
simple auxiliary domains (see for example [31,34,35,8,10,1,2,22], etc.). After that, the original domains are embedded into 
auxiliary domains (and the auxiliary domains are discretized using regular structured grids). Next, DPM constructs discrete 
pseudo-differential Boundary Equations with Projections to obtain the value of the solution at the points near the continuous 
boundary of the original domain (at the points of the discrete grid boundary which straddles the continuous boundary from 
the inside and outside of the domain). Using the reconstructed values of the solution at the discrete grid boundary, the 
approximation to the solution in each domain/subdomain is obtained through the discrete generalized Green’s formula. DPM 
offers geometric flexibility (without the use of unstructured meshes or “body-fitted” meshes), but does not require explicit knowledge 
of the fundamental solution. Furthermore, DPM is not limited to constant coefficient problems, does not involve singular integrals, and 
can handle general boundary and/or interface conditions.

The major computational cost of methods based on the Difference Potentials approach reduces to several solutions of 
simple auxiliary problems on regular structured grids. Methods based on Difference Potentials preserve the underlying ac-
curacy of the schemes being used for the space discretization of the continuous PDEs in each domain/subdomain and at 
the same time are not restricted by the type of the boundary or interface conditions (as long as the continuous prob-
lems are well-posed). Moreover, numerical schemes based on Difference Potentials are well-suited for the development of 
parallel algorithms (see [34,35,8], etc.). The reader can consult [31,32] and [28,29] for a detailed theoretical study of the 
methods based on Difference Potentials, and [31,32,11,20,33,39,36,22,5,34,35,7,8,10,1,2], etc. for the recent developments 
and applications of DPM.

In this work, we consider 2D elliptic models with material interfaces and develop efficient, high-order accurate (second-order and 
fourth-order) methods based on the Difference Potentials approach for such problems. This paper is an extension of the work 
in [10] to 2D models, and extension of the work in [34,35,8,9] to higher orders. The main contributions of the current 
work are 1) The development and validation of high-order methods based on Difference Potentials using central-difference 
discretization as the underlying approximation of the PDE (rather than compact schemes). Note that the employed central-
difference stencils result in a multi-layer discrete grid boundary set for the BEP, and hence different BEP are constructed 
at the boundaries/interfaces in comparison to Difference Potentials schemes based on compact stencils (compact stencils 
[22,23] generate standard two-layer discrete grid boundary for BEP similar to the second-order central-difference stencil); 
2) Consideration of the general interface conditions without assumptions of the continuity of the solution or/and continuity 
of the flux at the interface; 3) The conducted numerical experiments corroborate high-order accuracy and stability of the 
proposed numerical methods for interface problems with general interface conditions.

Let us also mention that a different example of an efficient and high-order accurate method, based on Difference Po-
tentials and compact schemes for the Helmholtz equation in homogeneous media with the variable wave number in 2D, 
was recently developed and numerically tested in [22] and extended to the numerical simulation of the transmission and 
scattering of waves in [23].

The paper is organized as follows. First, in Section 2 we introduce the formulation of our problem. Next, to simplify the 
presentation of the ideas for the construction of DPM with different orders of accuracy, we construct DPM with second and 
with fourth-order accuracy together in Section 3.2 for elliptic type models in a single domain. In Section 4, we extend the 
second and the fourth-order DPM to interface/composite domain model problems. After that, in Section 5 we give a brief 
summary of the main steps of the proposed numerical algorithms. Finally, we illustrate the performance of the designed nu-
merical algorithms based on Difference Potentials, as well as compare these algorithms with the Immersed Interface Method 
[15,4], Mayo’s method [21,4] and recently developed Edge-Based Correction Finite Element Interface method (EBC-FEI) [13]
in several numerical experiments in Section 6. We also present application of the developed methods based on Difference 
Potentials to the simulation of the linear static model of biological cell electropermeabilization (this model arises in Bio-
logical/Biomedical applications). Moreover, we illustrate in Section 6 that for DPM, the underlying numerical discretization 
(for example, numerical schemes with different orders of the approximation in different subdomains/domains), as well as 
meshes can be chosen totally independently for each subdomain/domain and the boundaries of the subdomains/interfaces 
do not need to conform/align with the grids. The constructed DPM based numerical algorithms are not restricted by the 
choice of boundary conditions, and the main computational complexity of the designed algorithms reduces to the several 
solutions of simple auxiliary problems on regular structured grids. Some concluding remarks are given in Section 7.

2. Elliptic problem with material interface

In this work we consider the interface/composite domain problem defined in some bounded domain !0 ⊂ R2:
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Fig. 1. Example of the composite domain: domains !1 and !2 separated by the interface ", and the example of the points in the discrete grid boundary set 
γ for the 9-point stencil of the fourth-order method. Auxiliary domain !0 can be selected here to coincide with the boundary of the exterior domain !1.

L!u =
{

L!1 u!1 = f1(x, y) (x, y) ∈ !1

L!2 u!2 = f2(x, y) (x, y) ∈ !2
(2.1)

subject to the appropriate interface conditions:

α1u!1

∣∣∣
"

− α2u!2

∣∣∣
"

= φ1(x, y), β1
∂u!1

∂n

∣∣∣∣
"

− β2
∂u!2

∂n

∣∣∣∣
"

= φ2(x, y) (2.2)

and boundary conditions 

l(u)|∂!1 = ψ(x, y) (2.3)

where !1 ∪ !2 = ! and ! ⊂ !0, see Fig. 1. Here, we assume L!s , s ∈ {1, 2} are second-order linear elliptic differential 
operators of the form 

L!s u!s ≡ ∇ · (λs∇us) − σsus, s ∈ {1,2}. (2.4)

The piecewise-constant coefficients λs ≥ 1 and σs ≥ 0 are defined in larger auxiliary subdomains !s ⊂ !0
s . The functions 

f s(x, y) are sufficiently smooth functions defined in each subdomain !s and α1, α2, β1, β2 are coefficients (possibly variable 
coefficients). We assume that the continuous problem (2.1)–(2.3) is well-posed. Furthermore, we consider operators L!s which 
are well-defined on some larger auxiliary domain !0

s : we assume that for any sufficiently smooth function f s(x, y) on !0
s , the equation 

L!0
s
u!0

s
= f s(x, y) has a unique solution u!0

s
on !0

s that satisfies the given boundary conditions on ∂!0
s .

Here and below, the index s ∈ {1, 2} is introduced to distinguish between the subdomains.

3. Single domain

Our aim here is to construct high-order accurate numerical methods based on Difference Potentials that can handle 
general boundary and interface conditions for the elliptic interface problems (2.1)–(2.3). To simplify the presentation, we 
will first consider an elliptic problem defined in a single domain !:

L!u = f (x, y), (x, y) ∈ ! (3.1)

subject to the appropriate boundary conditions 

l(u)|" = ψ(x, y) (3.2)

where ! ⊂ !0 and " := ∂!, see Fig. 2, and then extend the proposed ideas in a direct way to the interface/composite 
domain problems (2.1)–(2.3) in Section 4.

Similar to the interface problem (2.1)–(2.3) we assume that L! is the second-order linear elliptic differential operator of 
the form 

L!u ≡ ∇ · (λ∇u) − σu. (3.3)

The constant coefficients λ ≥ 1 and σ ≥ 0 are defined in a larger auxiliary subdomains ! ⊂ !0. The function f (x, y) is 
a sufficiently smooth function defined in domain !. We assume that the continuous problem (3.1)–(3.2) is well-posed. 
Moreover, we consider here the operator L! which is well-defined on some larger auxiliary domain: we assume that for any sufficiently 
smooth function f (x, y) on !0 , the equation L!0 u = f (x, y) has a unique solution u!0 on !0 satisfying the given boundary conditions 
on ∂!0 .
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Fig. 2. Example of an auxiliary domain !0, original domain ! ⊂ !0, and the example of the points in the discrete grid boundary set γ for the 5-point 
stencil of the second-order method (left figure) and the example of the points in the discrete grid boundary set γ for the 9-point stencil of the fourth-order 
method (right figure).

3.1. Preliminaries to continuous potentials with projectors

The main focus of this paper is second-order linear elliptic equations of the form (3.1), (3.3). For the time being, we 
restrict our attention to constant coefficient elliptic operators (3.3). However, the main ideas of the method and definitions 
presented here extend in a straightforward way to elliptic models in heterogeneous media, see for example the recent work 
[10] – 1D settings, 2nd- and 4th-order methods; [9] – 2D settings, 2nd-order method for elliptic models in heterogeneous 
media, where methods based on Difference Potentials have been developed for elliptic problems in heterogeneous media 
in 1D and 2D space dimensions. It will be part of our future work to extend high-order methods developed here and in 
[1,2] to efficient high-order methods (higher than 2nd-order methods in space) for elliptic and parabolic interface models 
in heterogeneous media in 2D.

Recall here some mathematical preliminaries to continuous generalized Calderon’s potentials with projectors (see also 
[31,35,22], etc.). Difference Potentials (that will be employed here for construction of efficient and highly accurate algorithms 
for interface problems) are a discrete analogue of the continuous generalized Calderon’s potentials with projectors. It is 
important to note that although this paper is focused on linear second-order elliptic problems, methods based on Difference Potentials 
are not limited to linear models or elliptic operators, [31,40,41].

Consider here the second-order linear elliptic equations with constant coefficients of the form (3.1), (3.3), where u(x, y) ∈
Cµ+2+ε,!̄, µ = 0, 1, ..., 0 < ε < 1 is a solution to (3.1).

Recall, that the Cauchy data v$ for an arbitrary continuous piecewise smooth function v(x, y) given on the boundary 
$ := ∂! and in some of its neighborhoods are defined as the vector-function 

v$ ≡ Tr$ v =
(

v
∣∣∣
$
,
∂v
∂n

∣∣∣
$

)
, (3.4)

where ∂
∂n is the outward normal derivative relative to !, operator Tr$ v denotes the trace of v(x, y) on the boundary $, 

and we assume that v|$ ∈ Cµ+2+ε,$, ∂v
∂n

∣∣∣
$

∈ Cµ+1+ε,$ . Similarly to (3.4), denote u$ to be the Cauchy data of a solution u

of (3.1). Now, if G := G(x, y) is the fundamental solution of L! , then recall classical Green’s formula for a solution u(x, y)
of (3.1): 

u(x, y) =
∫

$

(
u

∂G(x, y)

∂n
− ∂u

∂n
G(x, y)

)
ds +

∫∫

!

G(x, y) f (y)dy, (x, y) ∈ ! (3.5)

Recall, next, the definition of the generalized potential of Calderon type [30,31,40], see also [22]:

Definition 3.1. A generalized potential of Calderon type with vector density ξ$ = (ξ0, ξ1)|$ is the convolution integral 

P!$ξ$ :=
∫

$

(
ξ0

∂G(x, y)

∂n
− ξ1G(x, y)

)
ds, (x, y) ∈ ! (3.6)

Review of some properties of continuous generalized potential of Calderon type, see [30,31,35,40], see also [22]:
1. For any density ξ$ = (ξ0, ξ1)|$ with ξ0|$ ∈ Cµ+2+ε,$, ξ1|$ ∈ Cµ+1+ε,$ , we have that 

L![P!$ξ$] = 0
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2. In general, the trace of P!"ξ" will not coincide with ξ" = (ξ0, ξ1)|" : Tr"P!"ξ" ≠ ξ" . However, if u(x, y) is the so-
lution of the homogeneous equation: L![u] = 0 on !, and if it happens that the density ξ" ≡ Tr"u is the trace of that 
solution u(x, y), then P!"ξ" = u(x, y), (x, y) ∈ !, and (3.6) becomes the classical Green’s formula for the solution of the 
homogeneous problem:

u(x, y) =
∫

"

(
u

∂G(x, y)

∂n
− ∂u

∂n
G(x, y)

)
ds, (x, y) ∈ !

In other words, it can be shown that a given density function ξ" = (ξ0, ξ1)|" with ξ0|" ∈ Cµ+2+ε,", ξ1|" ∈ Cµ+1+ε," is the 
trace of a solution u(x, y) to the homogeneous equation L![u] = 0 on !: ξ" = Tr"u, iff it satisfies the homogeneous Boundary 
Equation with Projection (BEP):

ξ" − P"ξ" = 0 (3.7)

Here, projection P"ξ" is the Calderon projection defined as the trace on " of the potential P!"ξ" : 

P"ξ" := Tr"P!"ξ" . (3.8)

Note, that it can be shown that the operator P"ξ" is an actual projection operator: P"ξ" = P2
"ξ" .

3. Similarly to (3.7), a given density function ξ" = (ξ0, ξ1)|" is the trace of a solution u(x, y) to the inhomogeneous 
equation L![u] = f on !: ξ" = Tr"u, iff it satisfies the inhomogeneous Boundary Equation with Projection (BEP):

ξ" − P"ξ" = Tr"G f . (3.9)

Here, G denotes the Green’s operator, the inverse G f ≡
∫∫

! G(x, y) f (y)dy, see classical Green’s formula above (3.5).
Finally, after some density ξ" is obtained from (BEP) (3.9), the solution u(x, y) on ! is obtained from the Generalized 

Green’s Formula:

u = P!"ξ" + G f , (3.10)

where ξ" = Tr"u.
(Similarly, in the homogeneous case: u = P!"ξ" .)
4. Note, that inhomogeneous (BEP) (3.9) has multiple solutions ξ" since the equation L![u] = f on ! has multiple 

solutions u on ! (similarly, the homogeneous (BEP) (3.7) alone has multiple solutions ξ" since the equation L![u] = 0 on 
! has multiple solutions u on !). To find a unique solution u one must impose appropriate boundary conditions (3.2). 
Hence, one has to solve (BEP) together with the boundary conditions to find a unique density ξ" :

ξ" − P"ξ" = Tr"G f , (3.11)

l(P!"ξ" + G f )|" = ψ(x, y), (3.12)

(similarly, in the homogeneous case, to find a unique density ξ" , one has to solve ξ" − P"ξ" = 0 and l(P!"ξ")|" = ψ(x, y)).
5. For the detailed theory and more properties of the generalized Calderon’s potentials (including construction of the 

method for nonlinear problems) the reader can consult [30,31,40,41], see also [35,22], etc.

3.2. High-order methods based on difference potentials

The current work is an extension of the work started in 1D settings in [10] to the 2D elliptic models. For time being 
we restrict our attention here to models with piecewise-constant coefficients. However, the construction of the methods 
presented below allows for a straightforward extension to models in heterogeneous media, which will be part of our future 
research. In this work, the choices of the second-order discretization (3.16) and the fourth-order discretization (3.17) below 
were considered for the purpose of the efficient illustration and implementation of the ideas, as well as for the ease of the 
future extension to models in heterogeneous media. However, the approach presented here based on Difference Potentials 
is general, and can be similarly used with any suitable underlying high-order discretization of the given continuous model: 
DPM is the method of building a discrete approximation to the continuous generalized Calderon’s potentials, (3.6) and to the 
continuous Boundary Equations with Projections (BEP), (3.11)–(3.12), (3.10) (see [31] for the detailed theoretical foundation 
of DPM).

Similar to [10], we will illustrate our ideas below by constructing the second and the fourth-order schemes together, and 
will only comment on the differences between them.

Introduction of the Auxiliary Domain: Place the original domain ! in the computationally simple auxiliary domain !0 ⊂ R2

that we will choose to be a square. Next, introduce a Cartesian mesh for !0, with points x j = j'x, yk = k'y, (k, j =
0, ±1, ...). Let us assume for simplicity that h := 'x = 'y.

Define a finite-difference stencil Nκ
j,k := N5

j,k or Nκ
j,k := N9

j,k with its center placed at (x j, yk), to be a 5-point central 
finite-difference stencil of the second-order method, or a 9-point central finite-difference stencil of the fourth-order method, 
respectively, see Fig. 3:
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Fig. 3. Example (a sketch) of the 5-point stencil for the second-order scheme (3.13) (left figure) and example (a sketch) of the 9-point stencil for the 
fourth-order scheme (3.14) (right figure).

Nκ
j,k :=

{
(x j, yk), (x j±1, yk), (x j, yk±1)

}
, κ = 5, or (3.13)

Nκ
j,k :=

{
(x j, yk), (x j±1, yk), (x j, yk±1), (x j±2, yk), (x j, yk±2),

}
, κ = 9 (3.14)

Next, introduce the point sets M0 (the set of all mesh nodes (x j, yk) that belong to the interior of the auxiliary domain 
"0), M+ := M0 ∩" (the set of all the mesh nodes (x j , yk) that belong to the interior of the original domain "), and M− :=
M0\M+ (the set of all the mesh nodes (x j , yk) that are inside of the auxiliary domain "0 but belong to the exterior of the 
original domain "). Define N+ := {⋃ j,k Nκ

j,k|(x j, yk) ∈ M+} (the set of all points covered by the stencil Nκ
j,k when the center 

point (x j, yk) of the stencil goes through all the points of the set M+ ⊂ "). Similarly define N− := {⋃ j,k Nκ
j,k|(x j, yk) ∈ M−}

(the set of all points covered by the stencil Nκ
j,k when center point (x j, yk) of the stencil goes through all the points of the 

set M−).
Now, we can introduce γ := N+ ∩ N− . The set γ is called the discrete grid boundary. The mesh nodes from set γ straddle 

the boundary $ ≡ ∂". Finally, define N0 := {⋃ j,k Nκ
j,k|(x j, yk) ∈ M0} !"0.

Remark. From here and below κ either takes the value 5 (if the 5-point stencil is used to construct the second-order 
method), or 9 (if the 9-point stencil is used to construct the fourth-order method).

The sets N0, M0, N+ , N− , M+ , M− , γ will be used to develop high-order methods in 2D based on the Difference 
Potentials idea.

Construction of the Difference Equations: The discrete version of the problem (3.1) is to find u j,k, (x j, yk) ∈ N+ such that 

Lh[u j,k] = f j,k, (x j, yk) ∈ M+ (3.15)

The discrete system of equations (3.15) is obtained here by discretizing (3.1) with the second-order 5-point central finite 
difference scheme (3.16) (if the second-order accuracy is desired), or with the fourth-order 9-point central finite difference 
scheme in space (3.17) (if the fourth-order accuracy is needed). Here and below, by Lh we assume the discrete linear opera-
tor obtained using either the second-order approximation to (3.1), or the fourth-order approximation to (3.1), and by f j,k a discrete 
right-hand side.

Second-Order Scheme:

Lh[u j,k] := λ
u j+1,k − 2u j,k + u j−1,k

h2 + λ
u j,k+1 − 2u j,k + u j,k−1

h2 − σu j,k. (3.16)

The right-hand side in the discrete system (3.15) is f j,k := f (x j, yk) for the second-order method.
Fourth-Order Scheme:

Lh[u j,k] := λ
−u j+2,k + 16u j+1,k − 30u j,k + 16u j−1,k − u j−2,k

12h2

+ λ
−u j,k+2 + 16u j,k+1 − 30u j,k + 16u j,k−1 − u j,k−2

12h2 − σu j,k (3.17)

Again, the right-hand side in the discrete system (3.15) in case of fourth-order discretization (3.17) is f j,k := f (x j, yk).



70 J. Albright et al. / Applied Numerical Mathematics 111 (2017) 64–91

Remark. The standard second-order and fourth-order schemes (3.16)–(3.17) above are employed here as the underlying 
discretization of the continuous equation (3.1) similar to the 1D work, [10].

In general, the linear system of difference equations (3.15) will have multiple solutions as we did not enforce any bound-
ary conditions. Once we complete the discrete system (3.15) with the appropriate discrete boundary conditions, the method 
will result in an accurate approximation of the continuous model (3.1)–(3.2) in domain !. To do so efficiently, we will 
construct numerical algorithms based on the idea of the Difference Potentials.

General Discrete Auxiliary Problem: Some of the important steps of DPM are the introduction of the auxiliary problem, 
which we will denote as (AP), as well as definitions of the particular solution and Difference Potentials. Let us recall these 
definitions below (see also [31,10,9], etc.).

Definition 3.2. The problem of solving (3.18)–(3.19) is referred to as the discrete auxiliary problem (AP): For the given grid 
function q, (x j, yk) ∈ M0, find the solution v, (x j, yk) ∈ N0 of the discrete (AP) such that it satisfies the following system of 
equations:

Lh[v j,k] = q j,k, (x j, yk) ∈ M0, (3.18)

v j,k = 0, (x j, yk) ∈ N0\M0. (3.19)

Here, Lh is the same linear discrete operator as in (3.15), but now it is defined on the larger auxiliary domain !0

(note that, we assumed before in Section 3 that the continuous operator on the left-hand side of the equation (3.1) is 
well-defined on the entire domain !0). It is applied in (3.18) to the function v, (x j, yk) ∈ N0. We remark that under the 
above assumptions on the continuous model, the (AP) (3.18)–(3.19) is well-defined for any right-hand side function q on M0: 
it has a unique solution v on N0. In this work we supplemented the discrete (AP) (3.18) by the zero boundary conditions 
(3.19). In general, the boundary conditions for (AP) are selected to guarantee that the discrete system Lh[v j,k] = q j,k has a unique 
solution v on N0 for any discrete right-hand side function q on M0 .

Remark. The solution of the (AP) (3.18)–(3.19) defines a discrete Green’s operator Gh (or the inverse operator to Lh). Al-
though the choice of boundary conditions (3.19) will affect the operator Gh , and hence the difference potentials and the 
projections defined below, it will not affect the final approximate solution to (3.1)–(3.2), as long as the (AP) is uniquely 
solvable and well-posed.

Construction of a Particular Solution: Let us denote by u j,k := Gh f j,k, (x j, yk) ∈ N+ the particular solution of the discrete 
problem (3.15), which we will construct as the solution (restricted to set N+) of the auxiliary problem (AP) (3.18)–(3.19) of 
the following form:

Lh[u j,k] =
{

f j,k, (x j, yk) ∈ M+,
0, (x j, yk) ∈ M−,

(3.20)

u j,k = 0, (x j, yk) ∈ N0\M0 (3.21)

Difference Potential: We now introduce a linear space Vγ of all the grid functions denoted by vγ defined on γ , [31,10], 
etc. We will extend the value vγ by zero to other points of the grid N0.

Definition 3.3. The Difference Potential with any given density vγ ∈ Vγ is the grid function u j,k := PN+γ vγ , defined on N+ , 
and coincides on N+ with the solution u j,k of the auxiliary problem (AP) (3.18)–(3.19) of the following form:

Lh[u j,k] =
{

0, (x j, yk) ∈ M+,
Lh[vγ ], (x j, yk) ∈ M−,

(3.22)

u j,k = 0, (x j, yk) ∈ N0\M0 (3.23)

The Difference Potential is the discrete inverse operator. Here, PN+γ denotes the operator which constructs the difference 
potential u j,k = PN+γ vγ from the given density vγ ∈ Vγ . The operator PN+γ is the linear operator of the density vγ : 
um = ∑

l∈γ Alm vl , where m ≡ ( j, k) is the index of the grid point in the set N+ and l is the index of the grid point in the 
set γ . Here, value um is the value of the difference potential PN+γ vγ at the grid point with an index m : um = PN+γ vγ |m
and coefficients {Alm} are the coefficients of the difference potentials operator. The coefficients {Alm} can be computed by 
solving simple auxiliary problems (AP) (3.22)–(3.23) (or by constructing a Difference Potential operator) with the appropriate 
density vγ defined at the points (x j, yk) ∈ γ .

Next, similarly to [31,10], etc., we can define another operator Pγ : Vγ → Vγ that is defined as the trace (or restric-
tion/projection) of the Difference Potential PN+γ vγ on the grid boundary γ :
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Pγ vγ := T rγ (PN+γ vγ ) = (PN+γ vγ )|γ (3.24)

We will now formulate the crucial theorem of DPM (see, for example [31,10], etc.).

Theorem 3.4. Density uγ is the trace of some solution u to the Difference Equations (3.15): uγ ≡ T rγ u, if and only if, the following 
equality holds

uγ = Pγ uγ + Gh fγ , (3.25)

where Gh fγ := T rγ (Gh f ) is the trace (or restriction) of the particular solution Gh f , (x j, yk) ∈ N+ constructed in (3.20)–(3.21) on 
the grid boundary γ .

Proof. The proof follows closely the general argument from [31] and can be found, for example, in [10] (the extension to 
higher-dimension is straightforward). ✷

Remark. 

1. Note that the difference potential PN+γ uγ is the solution to the homogeneous difference equation Lh[u j,k] = 0, (x j, yk) ∈
M+ , and is uniquely defined once we know the value of the density uγ at the points of the boundary γ .

2. Note, also that the difference potential PN+γ uγ is the discrete approximation to the generalized potentials of the 
Calderon’s type P"#ξ# (3.6): PN+γ uγ ≈ P"#ξ# . Due to the construction of the extension operators (3.27) and (3.28), 
single-valued density uγ incorporates the information about the Cauchy data ξ# = (ξ0, ξ1) of the continuous solution 
u(x, y).

3. Moreover, note that the density uγ has to satisfy discrete Boundary Equations uγ − Pγ uγ = Gh fγ in order to be a trace 
of the solution to the difference equation Lh[u j,k] = f j,k, (x j, yk) ∈ M+ .

4. The discrete boundary equations with projection uγ − Pγ uγ = Gh fγ , (3.25) is the discrete analogue of the continuous 
boundary equations with projection ξ# − P#ξ# = Tr#G f , (3.9).

Coupling of Boundary Equations with Boundary Conditions: The discrete Boundary Equations with Projections (3.25) which can 
be rewritten in a slightly different form as: 

(I − Pγ )uγ = Gh fγ , (3.26)

is the linear system of equations for the unknown density uγ . Here, I is the identity operator, Pγ is the projection operator, 
and the known right-hand side Gh fγ is the trace of the particular solution (3.20) on the discrete grid boundary γ .

The above system of discrete Boundary Equations (3.26) will have multiple solutions without boundary conditions (3.2), 
since it is equivalent to the difference equations Lh[u j,k] = f j,k, (x j, yk) ∈ M+ . We need to supplement it by the boundary 
conditions (3.2) to construct the unique density uγ ≈ u(x, y)|γ , where u(x, y) is the solution to the continuous model 
(3.1)–(3.2).

Thus, we will consider the following approach to solve for the unknown density uγ from the discrete Boundary Equations
(3.26). One can represent the unknown densities uγ through the values of the continuous solution and its gradients at the 
boundary of the domain with the desired accuracy: in other words, one can define the smooth extension operator for the solution 
of (3.1), from the continuous boundary # = ∂" to the discrete boundary γ . Note that the extension operator (the way it is constructed 
below) depends only on the properties of the given model at the continuous boundary #.

For example, in case of 3 terms, the extension operator is: 

πγ #[u#] ≡ u j,k := u|# + d
∂u
∂n

∣∣∣
#

+ d2

2!
∂2u
∂n2

∣∣∣
#
, (x j, yk) ∈ γ , (3.27)

where πγ #[u#] defines the smooth extension operator of Cauchy data u# from the continuous boundary # to the discrete 
boundary γ , d denotes the signed distance from the point (x j , yk) ∈ γ to the nearest boundary point on the continuous 
boundary # of the domain " (the signed length of the shortest normal from the point (x j , yk) ∈ γ to the point on the 
continuous boundary # of the domain "). We take it either with sign “+” (if the point (x j, yk) ∈ γ is outside of the domain 
"), or with sign “−” (if the point (x j, yk) ∈ γ is inside the domain "). The choice of a 3 term extension operator (3.27) is 
sufficient for the second-order method based on Difference Potentials (see numerical tests (even with challenging geometry) 
in Section 6, as well as [31,10], etc.).

For example, in case of 5 terms, the extension operator is: 

πγ #[u#] ≡ u j,k := u|# + d
∂u
∂n

∣∣∣
#

+ d2

2!
∂2u
∂n2

∣∣∣
#

+ d3

3!
∂3u
∂n3

∣∣∣
#

+ d4

4!
∂4u
∂n4

∣∣∣
#
, (x j, yk) ∈ γ , (3.28)

again, as in (3.27), πγ #[u#] defines the smooth extension operator of Cauchy data u# from the continuous boundary # to 
the discrete boundary γ , d denotes the signed distance from the point (x j, yk) ∈ γ to the nearest boundary point on the 
continuous boundary # of the domain ". As before, we take it either with sign “+” (if the point (x j, yk) ∈ γ is outside 
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of the domain !), or with sign “−” (if the point (x j, yk) ∈ γ is inside the domain !). The choice of a 5 term extension 
operator (3.28) is sufficient for the fourth-order method based on Difference Potentials (see Section 6, [10], etc.).

For any sufficiently smooth single-valued periodic function g(ϑ) on $ with a period |$|, assume that the sequence 

εN 0,N 1 = min
c0
ν ,c1

ν

∫

$

(
|g(ϑ) −

N 0∑

ν=0

c0
νφ0

ν(ϑ)|2 + |g′(ϑ) −
N 1∑

ν=0

c1
νφ1

ν(ϑ)|2
)

dϑ (3.29)

tends to zero with increasing (N 0, N 1) : limεN 0,N 1 = 0 as N 0 → ∞, N 1 → ∞. Here, ϑ can be thought as the arc length 
along $, and |$| is the length of the boundary. We selected arc length ϑ at this point only for definiteness. Other parameters 
along $ are used in the numerical examples (polar coordinates for the circle and elliptical coordinates for the ellipse), see 
Section 6 and the brief discussion below. Note that, very similar construction of the extension operator and DPM applies to 
models in domains with general curvilinear boundaries without any special assumption on the shape of $ (the difference 
can be in the choice of the parametrization/local coordinates for the boundary of the domain), [34,35,8].

Therefore, to discretize the elements ξ |$ = Trξ ≡
(
ξ(ϑ)

∣∣∣
$
, ∂ξ

∂n (ϑ)
∣∣∣
$

)
from the space of Cauchy data, one can use the 

approximate equalities: 

ξ̃$ =
N 0∑

ν=0

c0
ν*0

ν(ϑ) +
N 1∑

ν=0

c1
ν*1

ν(ϑ), ξ̃$ ≈ ξ$ (3.30)

where *0
ν = (φ0

ν , 0) and *1
ν = (0, φ1

ν) are the set of basis functions to represent the Cauchy data on the boundary of the 
domain $ and (c0

ν , c1
ν) with (ν = 0, 1, ..., N 0, ν = 0, 1, ..., N 1) are the unknown numerical coefficients to be determined.

Remark. For smooth Cauchy data, it is expected that a relatively small number (N 0, N 1) of basis functions are required 
to approximate the Cauchy data of the unknown solution, due to the rapid convergence of the expansions (3.30). Hence, in 
practice, we use a relatively small number of basis functions in (3.30), which leads to a very efficient numerical algorithm 
based on Difference Potentials approach, see Section 6 for a numerical illustration of the method.

In the case of the Dirichlet boundary condition in (3.1)–(3.2), u(ϑ)|$ is known, and hence, the coefficients c0
ν above 

in (3.30) are given as the data which can be determined as the minimization of 
∫
$ |u(ϑ) − ∑N 0

ν=0 c0
νφ0

ν |2dϑ . For other 
boundary value problems (3.1), the procedure is similar to the case presented for Dirichlet data. For example, in the case 
of Neumann boundary condition in (3.2), the coefficients c1

ν in (3.30) are known and again found as the minimization of 
∫
$ | ∂u

∂n (ϑ) − ∑N 1

ν=0 c1
νφ1

ν |2dϑ .
1. Example of the construction of the extension operator in case of circular domains and polar angle θ as the parametrization 

parameter, ϑ ≡ θ : The elliptic equation in (3.1) can be rewritten in standard polar coordinates (r, θ) as:

λ

(
∂2u
∂r2 + 1

r
∂u
∂r

+ 1
r2

∂2u
∂θ2

)
− σu = f (3.31)

The coordinate r corresponds to the distance from the origin along the normal direction n to the circular interface $. 
Hence, extension operators (3.27)–(3.28) are equivalent to:

πγ $[u$] ≡ u j,k(r0, θ) =u
∣∣∣
$

+ d
∂u
∂r

∣∣∣
$

+ d2

2
∂2u
∂r2

∣∣∣
$

(3.32)

and

πγ $[u$] ≡ u j,k(r0, θ) =u
∣∣∣
$

+ d
∂u
∂r

∣∣∣
$

+ d2

2!
∂2u
∂r2

∣∣∣
$

+ d3

3!
∂3u
∂r3

∣∣∣
$

+ d4

4!
∂4u
∂r4

∣∣∣
$
, (3.33)

where, as before, d = r − r0 denotes the signed distance from a grid point (x j, yk) ∈ γ on the radius r, to the nearest 
point (x, y) ∈ $ on the original circle corresponding to the radius r0. The higher-order derivatives ∂e u

∂re , e = 2, 3, . . . on 
$ in (3.32)–(3.33) can be obtained through the Cauchy data (u(θ)|$, ∂u

∂r (θ)|$), and the consecutive differentiation of the 
governing differential equation (3.31) with respect to r as illustrated below:

∂2u
∂r2 = f + σu

λ
− 1

r2

∂2u
∂θ2 − 1

r
∂u
∂r

. (3.34)

The expression (3.34) for ∂2u
∂r2 is used in the 3-term extension operator (3.32) in the second-order method, and is used in 

the 5-term extension operator (3.33) in the fourth-order method.
Similarly, in the 5-term extension operator (3.33), terms ∂3u

∂r3 and ∂4u
∂r4 are replaced by the following expressions:

∂3u
∂r3 = − 1

r
f + σu

λ
+ 3

r3

∂2u
∂θ2 + 1

λ

∂ f
∂r

+
(

σ

λ
+ 2

r2

)
∂u
∂r

− 1
r2

∂2

∂θ2

∂u
∂r

(3.35)
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Fig. 4. Sketch of the elliptical coordinate system: distance from the center of the ellipse to either foci – ρ; isoline – η; elliptical angle – θ .

∂4u
∂r4 =

(
σ

λ
+ 3

r2

)
f + σu

λ
−

(
11
r4 + 2

r2

σ

λ

)
∂2u
∂θ2 + 1

r4

∂4u
∂θ4 (3.36)

− 1
rλ

∂ f
∂r

+ 1
λ

∂2 f
∂r2 − 1

r2λ

∂2 f
∂θ2 −

(
6
r3 + 2

r
σ

λ

)
∂u
∂r

+ 6
r3

∂2

∂θ2

∂u
∂r

(3.37)

2. Example of the construction of the extension operator in case of the elliptical domains, and elliptical angle θ as the parametriza-
tion parameter, ϑ ≡ θ : Analogously to the above case of a circular domain, for the case of the domain where boundary ( is 
defined by an ellipse x2/a2 + y2/b2 = 1, one possible convenient choice is to employ elliptical angle θ as the parametrization 
parameter ϑ ≡ θ , and represent the extension operators (3.27)–(3.28) using such parametrization (see also [22]). 

Recall, that an elliptical coordinate system with coordinates (η, θ) is given by the standard transformation:

x =ρ coshη cos θ (3.38)

y =ρ sinhη sin θ (3.39)

where η ≥ 0 and 0 ≤ θ < 2π , see Fig. 4. Also, recall that the distance from the center of the ellipse to either foci is defined 
as ρ =

√
a2 − b2.

In elliptical coordinates, the constant η = η0 ≡ 1
2 ln a+b

a−b , the coordinate line (isoline), is given by the ellipse:

x2

ρ2 cosh2 η0
+ y2

ρ2 sinh2 η0
= 1

Similarly, for constant θ = θ0, the coordinate line is defined by the hyperbola:

x2

ρ2 cos2 θ0
− y2

ρ2 sin2 θ0
= cosh2 η − sinh2 η = 1

Now, let us recall that for the choice of elliptical coordinates the basis vectors are defined as:

η̂ =(ρ sinhη cos θ,ρ coshη sin θ) (3.40)

θ̂ =(−ρ coshη sin θ,ρ sinhη cos θ) (3.41)

The corresponding Lame coefficients in both directions are equivalent to H = ρ
√

sinh2 η + sin2 θ . Consequently, the el-
liptic equation in (3.1) can be rewritten in the standard elliptical coordinates (η, θ) as:

λ

H2

(
∂2u
∂η2 + ∂2u

∂θ2

)
− σu = f (3.42)

Similarly to the above example of a circular domain, the smooth extension operators (3.27)–(3.28) are equivalent to:

πγ ([u(] ≡ u j,k(η0, θ) =u
∣∣∣
(

+ d
∂u
∂η

∣∣∣
(

+ d2

2
∂2u
∂η2

∣∣∣
(

(3.43)

and

πγ ([u(] ≡ u j,k(η0, θ) =u
∣∣∣
(

+ d
∂u
∂η

∣∣∣
(

+ d2

2!
∂2u
∂η2

∣∣∣
(

+ d3

3!
∂3u
∂η3

∣∣∣
(

+ d4

4!
∂4u
∂η4

∣∣∣
(

(3.44)
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where, again as before, d = η − η0 denotes the signed distance from a grid point (x j, yk) ∈ γ on the coordinate line η, to 
the nearest point (x, y) ∈ # on the original ellipse corresponding to the contour line η0.

The higher-order derivatives ∂e u
∂ηe , e = 2, 3, . . . on # in (3.43)–(3.44) can be obtained through the Cauchy data 

(u(θ)|#, ∂u
∂η (θ)|#), and the consecutive differentiation of the governing differential equation (3.42) with respect to η as 

illustrated below (note that in polar coordinates we had that ∂u
∂n = ∂u

∂r , but in elliptical coordinates we have ∂u
∂n = 1

H
∂u
∂η ):

∂2u
∂η2 = H2

λ
( f + σu) − ∂2u

∂θ2 (3.45)

∂3u
∂η3 =2

H
λ

∂ H
∂η

( f + σu) + H2

λ

(
∂ f
∂η

+ σ
∂u
∂η

)
− ∂3u

∂θ2∂η
(3.46)

∂4u
∂η4 =2

λ

((
∂ H
∂η

)2

+ H
∂2 H
∂η2

)

( f + σu) + 4
H
λ

∂ H
∂η

(
∂ f
∂η

+ σ
∂u
∂η

)
+ H2

λ

(
∂2 f
∂η2 + σ

∂2u
∂η2

)
− ∂4u

∂η2∂θ2 (3.47)

where ∂4u
∂η2∂θ2 is given by:

∂4u
∂η2∂θ2 =2

λ

((
∂ H
∂θ

)2

+ H
∂2 H
∂θ2

)

( f + σu) + 4
H
λ

∂ H
∂θ

(
∂ f
∂θ

+ σ
∂u
∂θ

)
+ H2

λ

(
∂2 f
∂θ2 + σ

∂2u
∂θ2

)
− ∂4u

∂θ4 (3.48)

Note, that in formulas (3.47)–(3.48) term ∂2u
∂η2 is replaced by expression given in (3.45).

After the selection of the parametrization ϑ of # and construction of the extension operator, we use spectral approxi-
mation (3.30) in the extension operator uγ = πγ #[ũ#] in (3.27) (for the second-order method), or in the extension operator 
uγ = πγ #[ũ#] in (3.28) (for the fourth-order method): 

uγ =
N 0∑

ν=0

c0
νπγ #[+0

ν(ϑ)] +
N 1∑

ν=0

c1
νπγ #[+1

ν(ϑ)]. (3.49)

Therefore, boundary equations (BEP) (3.26) becomes an overdetermined linear system of the dimension |γ | × (N 0 + N 1)
for the unknowns (c0

ν , c1
ν) (note that in general we can assume |γ | >> (N 0 + N 1)). This system (3.26) for (c0

ν , c1
ν) is solved 

using the least-squares method, and hence one obtains the unknown density uγ .
The final step of the DPM is to use the computed density uγ to construct the approximation to the solution (3.1)–(3.2) inside the 

physical domain ,.
Generalized Green’s Formula:

Statement 3.5. The discrete solution u j,k := PN+γ uγ + Gh f , (x j, yk) ∈ N+ is the approximation to the exact solution u(x j, yk), 
(x j, yk) ∈ N+ ∩ , of the continuous problem (3.1)–(3.2).

Discussion. The result is the consequence of the sufficient regularity of the exact solution, Theorem 3.4, either the extension 
operator (3.27) (for the second-order scheme) or the extension operator (3.28) (for the fourth-order scheme), as well as the 
second-order and the fourth-order accuracy of the schemes (3.16), (3.17) respectively. Thus, we expect that the numerical 
solution u j,k := PN+γ uγ + Gh f will approximate the exact solution u(x j, yk), (x j, yk) ∈ N+ ∩ ,̄ of the continuous problem 
(3.1)–(3.2) with O (h2) (for the second-order scheme) and with O (h4) (for the fourth-order scheme) in the maximum norm. 
Furthermore, in Section 6, we confirm the efficiency and the high-order accuracy of the proposed numerical algorithms with 
several challenging numerical tests for the interface/composite domain problems.

Recall, in [28,29] it was shown (under sufficient regularity of the exact solution), that the Difference Potentials approxi-
mate surface potentials of the elliptic operators (and, therefore DPM approximates the solution to the elliptic boundary value 
problem) with the accuracy of O (hP−ε) in the discrete Hölder norm of order Q + ε. Here, 0 < ε < 1 is an arbitrary number, 
Q is the order of the considered elliptic operator, and P is the order of the numerical scheme used for the approximation 
of the elliptic operator, see [28,29] or [31] for the details and proof of the general result. ✷

Remark.

• The formula PN+γ uγ + Gh f is the discrete generalized Green’s formula.
• Note that after the density uγ is reconstructed from the Boundary Equations with Projection (3.26), the Difference Poten-

tial is easily obtained as the solution of a simple (AP) using Definition 3.3.
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4. Schemes based on difference potentials for interface and composite domains problems

In Section 3.2 we constructed second and fourth-order schemes based on Difference Potentials for problems in the single 
domain !. In this section, we will show how to extend these methods to interface/composite domains problems (2.1)–(2.3).

First, as we have done in Section 3 for the single domain !, we will introduce the auxiliary domains. We will place each 
of the original subdomains !s in the auxiliary domains !0

s ⊂ R2, (s = 1, 2) and will state the auxiliary difference problems 
in each subdomain !s, (s = 1, 2). The choice of these auxiliary domains !0

1 and !0
2, as well as the auxiliary difference 

problems, do not need to depend on each other. After that, for each subdomain, we will proceed in a similar way as we 
did in Section 3.2. Also, for each auxiliary domain !0

s we will consider, for example a Cartesian mesh (the choice of the 
grids for the auxiliary problems will be independent of each other). After that, all the definitions, notations, and properties 
introduced in Section 3.2 extend to each subdomain !s in a direct way (index s, (s = 1, 2) is used to distinguish each 
subdomain). Let us denote the difference problem of (2.1)–(2.3) for each subdomain as: 

Ls
h[u j,k] = f s j,k, (x j, yk) ∈ M+

s (4.1)

The difference problem (4.1) is obtained using either the second-order (3.16) or the fourth-order scheme (3.17).
The main theorem of the method for the composite domains/interface problems is:

Statement 4.1. Density uγ := (uγ1 , uγ2 ) is the trace of some solution u, (x j, yk) ∈ !1 ∪ !2 to the Difference Equations (4.1): uγ ≡
T rγ u, if and only if, the following equalities hold

uγ1 = Pγ1 uγ1 + Gh fγ1 , (x j, yk) ∈ γ1 (4.2)

uγ2 = Pγ2 uγ2 + Gh fγ2 , (x j, yk) ∈ γ2 (4.3)

The obtained discrete solution u j,k := PsN+
s γs

uγs +Gh
s fs, (x j, yk) ∈ N+

s is the approximation to the exact solution u(x j, yk), (x j, yk) ∈
N+

s ∩ !s of the continuous model problem (2.1)–(2.3). Here, index s = 1, 2.

Discussion. The result is a consequence of the results in Section 3.2. We expect that the solution u j,k := PsN+
s γs

uγs +
Gh

s fs, (x j, yk) ∈ N+
s will approximate the exact solution u(x j, yk), (x j, yk) ∈ N+

s ∩ !̄s , (s = 1, 2) with the accuracy O (h2)

for the second-order method, and with the accuracy O (h4) for the fourth-order method in the maximum norm. Also, see 
Section 6 for the numerical results. ✷

Remark. Similar to the discussion in Section 3.2, the Boundary Equations (4.2)–(4.3) alone will have multiple solutions and 
have to be coupled with boundary (2.3) and interface conditions (2.2) to obtain the unique densities uγ1 and uγ2 . We 
consider the extension formula (3.27) (second-order method) or (3.28) (fourth-order method) to construct uγs , s = 1, 2 in 
each subdomain/domain.

5. Main steps of the algorithm

In this section, for the reader’s convenience we will briefly summarize the main steps of the numerical algorithm.

• Step 1: Introduce a computationally simple auxiliary domain and formulate the auxiliary problem (AP).
• Step 2: Compute a Particular solution, u j,k := Gh f , (x j, yk) ∈ N+ , as the solution of the (AP). For the single domain 

method, see (3.20)–(3.21) in Section 3.2 (second-order and fourth-order schemes). For the direct extension of the algo-
rithms to the interface and composite domains problems, see Section 4.

• Step 3: Next, compute the unknown densities uγ at the points of the discrete grid boundary γ by solving the system of 
linear equations derived from the system of Boundary Equations with Projection: see (3.26)–(3.27) (second-order scheme), 
or (3.26), (3.28) (fourth-order scheme) in Section 3.2, and extension to the interface and composite domain problems 
(4.2)–(4.3) in Section 4.

• Step 4: Using the definition of the Difference Potential, Definition 3.3, Section 3.2, and Section 4 (algorithm for inter-
face/composite domain problems), compute the Difference Potential PN+γ uγ from the obtained density uγ .

• Step 5: Finally, obtain the approximation to the continuous solution from uγ using the generalized Green’s formula, 
u(x, y) ≈ PN+γ uγ + Gh f , see Statement 3.5 in Section 3.2, and see Statement 4.1 in Section 4.

6. Numerical tests

In this section, we present several numerical experiments for interface/composite domain problems that illustrate the 
high-order accuracy and efficiency of methods based on Difference Potentials presented in Sections 2–4. Moreover, we 
also compare the accuracy of Difference Potentials methods with the accuracy of some established methods for interface 
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problems, like Mayo’s method [21,4], and Immersed Interface method (IIM) [15,4], as well as with the accuracy of a recently 
developed Finite Element method, Edge-Based Correction Finite Element Interface method (EBC-FEI), [13].

In all the numerical tests below, except the first test from [13] Table 1, the error in the approximation E to the exact 
solution of the model is determined by the size of the relative maximum error:

E :=
max(x j,yk)∈M+

1 ∪M+
2

|u(x j, yk) − u j,k|
max(x j,yk)∈M+

1 ∪M+
2

|u(x j, yk)|
(6.1)

Moreover, we also compute the relative maximum error in the components of the discrete gradient denoted E∇x and 
E∇y , which are determined by the following centered difference formulas:

E∇x :=
max(xi ,y j)∈M+

1 ∪M+
2

| u(x j+h,yk)−u(x j−h,yk)

2h − u j+1,k−u j−1,k
2h |

max(x j,yk)∈M+
1 ∪M+

2
| u(x j+h,yk)−u(x j−h,yk)

2h |
(6.2)

E∇y :=
max(xi ,y j)∈M+

1 ∪M+
2

| u(x j ,yk+h)−u(x j,yk−h)

2h − u j,k+1−u j,k−1
2h |

max(x j ,yk)∈M+
1 ∪M+

2
| u(x j ,yk+h)−u(x j,yk−h)

2h |
(6.3)

In the first test below from [13], Section 6.1, Table 1, we compute just maximum error in the solution Em and in the discrete 
gradient of the solution Em

∇x
and Em

∇y
.

Remarks.

1. Below, in Sections 6.1–6.4 we consider interface/composite domain problems defined in domains similar to the example 
of the domains !1 and !2 illustrated on Fig. 1, Section 1. Hence, for the exterior domain !1 we select auxiliary 
domain !0

1 to be a rectangle with the boundary ∂!0
1, which coincides with the exterior boundary ∂!1 of the exterior 

domain !1. After that, we construct our method based on Difference Potentials as described in Sections 3.2–5. To take 
advantage of the given boundary conditions and specifics of the exterior domain !1/auxiliary domain !0

1, we construct 
the particular solution (3.20) and Difference Potential (3.22) for the exterior auxiliary problem in !0

1 using the discrete 
operator Lh[u j,k]. This discrete operator has a modified stencil near the boundary of the auxiliary domain !0

1 for the 
fourth-order method (3.17) as follows (example of the point at “southwest” corner of the grid):

L1
h[u1,1] = λ1

10u0,1 − 15u1,1 − 4u2,1 + 14u3,1 − 6u4,1 + u5,1

12h2

+ λ1
10u1,0 − 15u1,1 − 4u1,2 + 14u1,3 − 6u1,4 + u1,5

12h2 − σ1u1,1, in !0
1. (6.4)

Other near-boundary nodes in !0
1 are handled in a similar way in Lh[u j,k] for (3.17) (fourth-order scheme).

Note, that to construct a particular solution (3.20) and Difference Potential (3.22) for the interior problem stated in auxiliary 
domain !0

2 , we do not modify stencil in Lh[u j,k] for (3.17) (fourth-order scheme) near the boundary ∂!0
2 of the interior auxiliary 

domain !0
2 .

2. In all numerical tests in Sections 6.1–6.4, we select a standard trigonometric system of basis functions for the 
spectral approximation in (3.30), Section 3.2: φ0(ϑ) = 1, φ1(ϑ) = sin

(
2π
|(| ϑ

)
, φ2(ϑ) = cos

(
2π
|(| ϑ

)
, . . . , φ2ν(ϑ) =

cos
(

2πν
|(| ϑ

)
and φ2ν+1(ϑ) = sin

(
2πν
|(| ϑ

)
, ν = 0, 1, 2, . . . Here, φν ≡ φ0

ν ≡ φ1
ν .

6.1. Second-order (DPM2) and fourth-order (DPM4): comparison with EBC-FEI, IIM and Mayo’s methods

The first test that we consider below (6.5)–(6.6) can be found in a recent paper, on Edge-Based Correction Finite Element 
Interface method (EBC-FEI), [13], and a similar test problem was considered also in [15]. In this test we illustrate that DPM2 
and DPM4 capture the solution and the discrete gradient of the solution with almost machine-accuracy (compare to EBC-FEI 
results in [13]). The test problem is defined similar to [13]: 

*u = 0, (6.5)

subject to the interface and boundary conditions in the form of (2.2)–(2.3) (computed using the exact solution and Dirichlet 
boundary condition on the boundary of the exterior domain ∂!1). The exact solution for the test problem is

u(x, y) =
{

u1(x, y) = 0, (x, y) ∈ !1,

u2(x, y) = x2 − y2, (x, y) ∈ !2.
(6.6)
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Table 1
Grid convergence in the approximate solution and components of the discrete gradi-
ent for DPM2 (left) and DPM4 (right). Here, we selected N to match h in the paper, 
[13]: N = 45 corresponds to h ≈ 4.4e−02 and N = 1438 corresponds to h = 1.4e−03. 
The interior domain !2 is the circle with R = 2

3 centered at the origin, and the exte-
rior domain is !1 = [−1, 1] × [−1, 1]\!2. The dimension of the set of basis functions 
is N 0 + N 1 = 2.

N Em: DPM2 Em: DPM4

45 4.9960E−16 6.1062E−16
89 1.2930E−15 5.2180E−15

179 2.7756E−16 1.3656E−14
360 1.6653E−15 1.7855E−15
719 1.8282E−15 1.9335E−13

1438 1.1191E−15 7.8770E−13

N Em
∇x: DPM2 Em

∇x: DPM4

45 4.3299E−15 6.2728E−15
89 1.0436E−14 2.2204E−14

179 1.9873E−14 6.7057E−14
360 5.7399E−14 7.5051E−14
719 1.2468E−13 8.8818E−13

1438 2.8433E−13 3.5123E−12

N Em
∇ y : DPM2 Em

∇ y : DPM4

45 3.1086E−15 3.7470E−15
89 8.6597E−15 2.4647E−14

179 1.2434E−14 7.1942E−14
360 4.4964E−14 5.9952E−14
719 1.0991E−13 8.8818E−13

1438 2.5935E−13 3.4326E−12

The interior subdomain and exterior subdomain for the test problem are:

!2 = x2 + y2 <
4
9
, interior subdomain,

!1 = [−1,1] × [−1,1] \ !2, exterior subdomain.

We employ for DPM the following auxiliary domains here:

!0
1 ≡ !0

2 = [−1,1] × [−1,1].
Table 1 (maximum error in the solution and the maximum error in the components of discrete gradient of the solution) 

clearly illustrate almost machine precision accuracy for DPM2 and DPM4 as expected on such a test problem (the ob-
served slight breakdown of the accuracy of the fourth-order scheme DPM4 on finer grids is due to the loss of significant 
digits).

The other tests presented in Tables 2–26, Sections 6.1–6.3 consider ellipses x2

a2 + y2

b2 = 1 with a different aspect ratio 
a/b as the interface curve. Note that we also performed the same tests using a circle as the interface curve and obtained 
a similar convergence rate: second-order and fourth-order convergence rate in the maximum error in the solution, as well 
as in the maximum error in the discrete gradient of the solution for DPM2 and DPM4, respectively. Furthermore, results 
presented in Fig. 5 show that the error in the solution in DPM (DPM2 and DPM4) is not affected too much by the size of 
the aspect ratio of the considered elliptical domains. This demonstrates the additional robustness of the designed numerical 
schemes.

The test problems for Tables 2–3 are defined similar to [4]: 

"us = f s, s = 1,2 (6.7)

subject to the interface and boundary conditions in the form of (2.2)–(2.3) (computed using the exact solutions and Dirichlet 
boundary condition on the boundary of the exterior domain ∂!1). The exact solution, see Fig. 6, for the test problem in [4], 
page 110 and in Table 2 is defined as

u(x, y) =
{

u1(x, y) = 0, (x, y) ∈ !1,
u2(x, y) = sin x cos y, (x, y) ∈ !2

(6.8)

The exact solution, see Fig. 6 for the test problem in [4], page 112 and in Table 3 is defined as

u(x, y) =
{

u1(x, y) = 0, (x, y) ∈ !1,

u2(x, y) = x9 y8, (x, y) ∈ !2.
(6.9)
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Fig. 5. Grid convergence using DPM2 (blue) and DPM4 (black) is compared for several different interfaces ! : x2/a2 + y2/b2 = 1 with increasing aspect 
ratios a/b. The results are presented for the test problem (6.10), (6.11) with material coefficients λ1 = λ2 = 1 (left figure) and for the test problem (6.10), 
(6.12) with material coefficients λ1 = λ2 = 1 (right figure). Similar results are produced by DPM for the same test problems but with different material 
coefficients in different subdomains, as well as for error in the gradient of the solution. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 6. Plot of the numerical solution corresponding to (6.8) using DPM4 (left). Plot of the numerical solution corresponding to (6.9) using DPM4 (right).

The interior domain and exterior domains for both test problems are:

#2 = x2

0.49
+ y2

0.81
< 1,

#1 = [−1.1,1.1] × [−1.1,1.1] \ #2.

Again, to use similar (but not exact) settings as in [4] we employ for DPM2 and DPM4 the following auxiliary domains here:

#0
1 = [−1.1,1.1] × [−1.1,1.1],

#0
2 = [−1.375,1.375] × [−1.375,1.375].

Results in Tables 2–3 for DPM2 illustrate overall second-order rate of convergence in the relative maximum error in the 
solution and in the relative maximum error in the discrete gradient of the solution, and are either similar or better than 
the results for Mayo’s method and IIM for the same test problems in [4]. Moreover, DPM4 gives a fourth-order convergence 
rate in the relative maximum error in the solution and in the relative maximum error in the discrete gradient of the 
solution, and the magnitude of the errors is much smaller than for DPM2, Mayo’s method and IIM. Such high-order accuracy 
of DPM4 and the efficiency of numerical algorithms based on Difference Potentials is also crucial for time-dependent problems where 
lower-order methods will fail to resolve delicate features of the solutions to model problems [1,2]. Note, that we also used here 
different auxiliary domains for the interior and exterior subdomains – this is another flexibility of DPM. Let us mention that 
the observed breakdown of the accuracy of the DPM4 on the finer grid in Table 2 is due to the loss of significant digits, as 
the absolute levels of error get closer to machine zero. Finally, let us comment that for the elliptic models, DPM2 can be 
more computationally expensive (but more accurate) than the second-order Mayo’s method or the second-order IIM. The 
overall computational complexity of the proposed algorithms based on Difference Potentials is the repeated solution of the 
simple discrete AP (3.18)–(3.19) (it needs to be solved about N1 +N2 times). But, only the right-hand side of the AP changes 
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Table 2
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 0.7, b = 0.9 centered at the origin, and the exterior domain 
is [−1.1, 1.1] ×[−1.1, 1.1]\!2 . Test problem (6.7)–(6.8). The dimension of the set of basis functions is N 0 +N 1 =
2. In this test N denotes half of the number of subintervals in each direction as in [4]: compare results to [4]
Table 1 (top), page 111.

N E: DPM2 Rate E: DPM4 Rate

40 2.4180E−05 – 1.7270E−08 –
80 3.4680E−06 2.80 6.6025E−10 4.71

160 8.8833E−07 1.96 4.4058E−11 3.91
320 1.6222E−07 2.45 2.0658E−12 4.41
640 2.5862E−08 2.65 1.5394E−13 3.75

N E∇x: DPM2 Rate E∇x: DPM4 Rate

40 1.7073E−04 – 1.1793E−07 –
80 4.6437E−05 1.88 9.1058E−09 3.70

160 1.1223E−05 2.05 5.8895E−10 3.95
320 3.0797E−06 1.87 3.7220E−11 3.98
640 8.2122E−07 1.91 1.9138E−11 0.96

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

40 1.2071E−04 – 8.8412E−08 –
80 3.3660E−05 1.84 6.1055E−09 3.86

160 8.4065E−06 2.00 3.8586E−10 3.98
320 2.0770E−06 2.02 2.5030E−11 3.95
640 5.2512E−07 1.98 1.6489E−11 0.60

Table 3
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 0.7, b = 0.9 centered at the origin, and the exterior domain 
is [−1.1, 1.1] ×[−1.1, 1.1]\!2. Test problem (6.7), (6.9). The dimension of the set of basis functions is N 0 +N 1 =
2. In this test N denotes half of the number of subintervals in each direction as in [4]: compare results to [4], 
Table 2, page 112.

N E: DPM2 Rate E: DPM4 Rate

40 2.0806E−04 – 9.8715E−05 –
80 1.6632E−04 0.32 3.0595E−06 5.01

160 2.6204E−05 2.67 2.0603E−07 3.89
320 2.7635E−06 3.25 9.0652E−09 4.51
640 8.5375E−07 1.69 3.5813E−10 4.66

N E∇x: DPM2 Rate E∇x: DPM4 Rate

40 1.3244E−02 – 3.1656E−04 –
80 3.6334E−03 1.87 1.7578E−05 4.17

160 8.0133E−04 2.18 1.0516E−06 4.06
320 2.1239E−04 1.92 6.4620E−08 4.02
640 5.8496E−05 1.86 4.0180E−09 4.01

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

40 1.8164E−02 – 3.9253E−04 –
80 3.9592E−03 2.20 2.1308E−05 4.20

160 1.1045E−03 1.84 1.2480E−06 4.09
320 2.8151E−04 1.97 7.5577E−08 4.05
640 6.6274E−05 2.09 4.6188E−09 4.03

and N1 + N2 << |γs|, thus the repeated solutions of the AP (3.18)–(3.19) can be done very efficiently. Here, |γs|, (s = 1, 2)

is the cardinality of the discrete boundary set.

6.2. Second-order (DPM2) and fourth-order (DPM4): additional numerical tests

The next several tests are modified versions of the test problem from [17]. Furthermore, we consider an interface model 
problem (2.1) with different diffusion/material coefficients in different subdomains (including a large jump ratio between 
diffusion/material coefficients λ1 in !1 and λ2 in !2) which makes it an even more challenging task for numerical methods. 
In all the following tables, N denotes the total number of subintervals in each direction. The test problems for Tables 4–12 are 
defined similar to [17]: 

∇ · (λs∇us) = f s, s = 1,2 (6.10)
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Fig. 7. Plot of the numerical solution using DPM4 corresponding to (6.11) with interface defined by the ellipse ! : x2 + 4y2 = 1 (left figure). Plot of the 
numerical solution using DPM4 corresponding to (6.12) with interface defined by the ellipse ! : x2 + 4y2 = 1 (right figure).

Table 4
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain "2 is the ellipse with a = 1, b = 0.5 centered at the origin, and the exterior domain 
is "1 = [−2, 2] × [−2, 2]\"2. Test problem (6.10), (6.11) with material coefficients λ1 = λ2 = 1. The dimension of 
the set of basis functions is N 0 + N 1 = 17.

N E: DPM2 Rate E: DPM4 Rate

160 2.8834E−04 – 4.6351E−07 –
320 7.6116E−05 1.92 2.6459E−08 4.13
640 2.0678E−05 1.88 1.7726E−09 3.90

1280 4.9212E−06 2.07 1.0498E−10 4.08

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 5.5817E−04 – 6.7908E−07 –
320 1.5141E−04 1.88 4.4384E−08 3.94
640 4.5776E−05 1.73 2.8536E−09 3.96

1280 1.1892E−05 1.94 1.8609E−10 3.94

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 5.5629E−04 – 9.3938E−07 –
320 1.3835E−04 2.01 3.9553E−08 4.57
640 3.5578E−05 1.96 2.7175E−09 3.86

1280 9.3981E−06 1.92 1.7772E−10 3.93

subject to the interface and boundary conditions in the form of (2.2)–(2.3) (computed using the exact solutions and Dirichlet 
boundary condition on the boundary of the exterior domain ∂"1). The exact solution for the test problem in Tables 4–12,
see also Fig. 7 (and in [17]) is defined as

u(x, y) =
{

u1(x, y) = sin x cos y, (x, y) ∈ "1,

u2(x, y) = x2 − y2, (x, y) ∈ "2.
(6.11)

Moreover, the exact solution for the test problem in Tables 13–26 has a much higher frequency (oscillations) in the exterior 
subdomain "1, see Fig. 7, and is defined as:

u(x, y) =
{

u1(x, y) = sin 3πx cos 7π y, (x, y) ∈ "1,

u2(x, y) = x2 − y2, (x, y) ∈ "2.
(6.12)

The interior domain and exterior domains for both test problems are:

"2 = x2

a2 + y2

b2 < 1,

"1 = [−2,2] × [−2,2] \ "2.

We employ for DPM the following auxiliary domains here: 

"0
1 ≡ "0

2 = [−2,2] × [−2,2].
As in previous tests, results in Tables 4–21 illustrate an overall second-order rate of convergence for DPM2, and fourth-

order convergence rate for DPM4 in the relative maximum error in the solution and in the relative maximum error in 
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Table 5
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 0.9, b = 0.3 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.11) with material coefficients λ1 = λ2 = 1. The dimension of 
the set of basis functions is N 0 + N 1 = 17.

N E: DPM2 Rate E: DPM4 Rate

160 5.5513E−04 – 9.6244E−06 –
320 1.3776E−04 2.01 1.2031E−07 6.32
640 3.1185E−05 2.14 6.8993E−09 4.12

1280 7.5539E−06 2.05 4.1147E−10 4.07

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 1.2706E−03 – 2.8293E−05 –
320 3.9571E−04 1.68 2.4007E−07 6.88
640 1.1077E−04 1.84 1.8805E−08 3.67

1280 2.9727E−05 1.90 1.3125E−09 3.84

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 1.1064E−03 – 4.1055E−05 –
320 2.5858E−04 2.10 3.1522E−07 7.03
640 7.5354E−05 1.78 1.6035E−08 4.30

1280 2.0664E−05 1.87 1.0850E−09 3.89

Table 6
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.25 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.11) with material coefficients λ1 = λ2 = 1. The dimension of 
the set of basis functions is N 0 + N 1 = 17.

N E: DPM2 Rate E: DPM4 Rate

160 7.9331E−04 – 1.1962E−06 –
320 1.5312E−04 2.37 2.9307E−07 2.03
640 3.8833E−05 1.98 1.1668E−08 4.65

1280 9.3874E−06 2.05 6.6905E−10 4.12

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 1.8881E−03 – 3.9764E−06 –
320 4.5911E−04 2.04 1.0648E−06 1.90
640 1.4552E−04 1.66 3.5132E−08 4.92

1280 4.0391E−05 1.85 2.5001E−09 3.81

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.1015E−03 – 6.3942E−06 –
320 4.5735E−04 2.20 1.6593E−06 1.95
640 1.1380E−04 2.01 4.3716E−08 5.25

1280 3.1276E−05 1.86 2.2722E−09 4.27

the discrete gradient of the solution. This confirms that designed methods based on Difference Potentials are high-order 
accurate sharp interface methods, which can also handle irregular geometry efficiently using simple grids.

6.3. Second-order (DPM2) and fourth-order (DPM4): non-matching grids and mixed-order

Finally, we use the same test problem (6.10), (6.12) to illustrate another flexibility of these methods: we consider non-
matching grids for different subdomains, see Table 22. We show that when we use a much coarser mesh in the domain 
!2 with the less oscillatory solution, we obtain an accuracy which is very close to the accuracy we achieved while using 
the same fine mesh in both domains !1 and !2, see Table 23. We plan to develop this feature further and design adaptive 
algorithms based on DPM that will handle geometric singularities. Moreover, for the same test problem, (6.10), (6.12) we 
consider mixed-order DPM (we use different order of approximation in different domains), Tables 24–25. We also show that 
when we use a lower order approximation in the domain !2 with a less oscillatory solution, we obtain an accuracy which 
is very close to the accuracy achieved while using the same high-order approximation in both domains !1 and !2 (and 
better accuracy when we used the same lower-order in both domains !1 and !2, see Table 26).

The interior domain and exterior domains in tests in Tables 22–26 are:

!2 = x2 + 4y2 < 1,

!1 = [−2,2] × [−2,2] \ !2.
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Table 7
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.5 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.11) with material coefficients λ1 = 1000 and λ2 = 1. The 
dimension of the set of basis functions is N 0 + N 1 = 17.

N E: DPM2 Rate E: DPM4 Rate

160 2.8834E−04 – 4.6351E−07 –
320 7.6116E−05 1.92 2.6459E−08 4.13
640 2.0678E−05 1.88 1.7726E−09 3.90

1280 4.9212E−06 2.07 1.0487E−10 4.08

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 5.5817E−04 – 6.7908E−07 –
320 1.5141E−04 1.88 4.4384E−08 3.94
640 4.5776E−05 1.73 2.8536E−09 3.96

1280 1.1892E−05 1.94 1.8604E−10 3.94

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 5.5629E−04 – 9.3938E−07 –
320 1.3835E−04 2.01 3.9553E−08 4.57
640 3.5578E−05 1.96 2.7175E−09 3.86

1280 9.3981E−06 1.92 1.7780E−10 3.93

Table 8
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 0.9, b = 0.3 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.11) with material coefficients λ1 = 1000 and λ2 = 1. The 
dimension of the set of basis functions is N 0 + N 1 = 17.

N E: DPM2 Rate E: DPM4 Rate

160 5.5513E−04 – 9.6244E−06 –
320 1.3776E−04 2.01 1.2031E−07 6.32
640 3.1185E−05 2.14 6.8993E−09 4.12

1280 7.5539E−06 2.05 4.1143E−10 4.07

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 1.2706E−03 – 2.8293E−05 –
320 3.9571E−04 1.68 2.4007E−07 6.88
640 1.1077E−04 1.84 1.8805E−08 3.67

1280 2.9727E−05 1.90 1.3124E−09 3.84

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 1.1064E−03 – 4.1055E−05 –
320 2.5858E−04 2.10 3.1522E−07 7.03
640 7.5354E−05 1.78 1.6035E−08 4.30

1280 2.0664E−05 1.87 1.0851E−09 3.89

Table 9
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.25 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.11) with material coefficients λ1 = 1000 and λ2 = 1. The 
dimension of the set of basis functions is N 0 + N 1 = 17.

N E: DPM2 Rate E: DPM4 Rate

160 7.9331E−04 – 1.1962E−06 –
320 1.5312E−04 2.37 2.9307E−07 2.03
640 3.8833E−05 1.98 1.1668E−08 4.65

1280 9.3874E−06 2.05 6.6897E−10 4.12

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 1.8881E−03 – 3.9764E−06 –
320 4.5911E−04 2.04 1.0648E−06 1.90
640 1.4552E−04 1.66 3.5132E−08 4.92

1280 4.0391E−05 1.85 2.5000E−09 3.81

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.1015E−03 – 6.3942E−06 –
320 4.5735E−04 2.20 1.6593E−06 1.95
640 1.1380E−04 2.01 4.3716E−08 5.25

1280 3.1276E−05 1.86 2.2721E−09 4.27
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Table 10
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.5 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.11) with material coefficients λ1 = 1 and λ2 = 1000. The 
dimension of the set of basis functions is N 0 + N 1 = 17.

N E: DPM2 Rate E: DPM4 Rate

160 2.8834E−04 – 4.6351E−07 –
320 7.6116E−05 1.92 2.6459E−08 4.13
640 2.0678E−05 1.88 1.7726E−09 3.90

1280 4.9212E−06 2.07 1.0497E−10 4.08

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 5.5817E−04 – 6.7908E−07 –
320 1.5141E−04 1.88 4.4384E−08 3.94
640 4.5776E−05 1.73 2.8536E−09 3.96

1280 1.1892E−05 1.94 1.8616E−10 3.94

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 5.5629E−04 – 9.3938E−07 –
320 1.3835E−04 2.01 3.9553E−08 4.57
640 3.5578E−05 1.96 2.7175E−09 3.86

1280 9.3981E−06 1.92 1.7778E−10 3.93

Table 11
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 0.9, b = 0.3 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.11) with material coefficients λ1 = 1 and λ2 = 1000. The 
dimension of the set of basis functions is N 0 + N 1 = 17.

N E: DPM2 Rate E: DPM4 Rate

160 5.5513E−04 – 9.6244E−06 –
320 1.3776E−04 2.01 1.2031E−07 6.32
640 3.1185E−05 2.14 6.8993E−09 4.12

1280 7.5539E−06 2.05 4.1148E−10 4.07

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 1.2706E−03 – 2.8293E−05 –
320 3.9571E−04 1.68 2.4007E−07 6.88
640 1.1077E−04 1.84 1.8805E−08 3.67

1280 2.9727E−05 1.90 1.3124E−09 3.84

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 1.1064E−03 – 4.1055E−05 –
320 2.5858E−04 2.10 3.1522E−07 7.03
640 7.5354E−05 1.78 1.6035E−08 4.30

1280 2.0664E−05 1.87 1.0849E−09 3.89

Table 12
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.25 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.11) with material coefficients λ1 = 1 and λ2 = 1000. The 
dimension of the set of basis functions is N 0 + N 1 = 17.

N E: DPM2 Rate E: DPM4 Rate

160 7.9331E−04 – 1.1962E−06 –
320 1.5312E−04 2.37 2.9307E−07 2.03
640 3.8833E−05 1.98 1.1668E−08 4.65

1280 9.3874E−06 2.05 6.6906E−10 4.12

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 1.8881E−03 – 3.9764E−06 –
320 4.5911E−04 2.04 1.0648E−06 1.90
640 1.4552E−04 1.66 3.5132E−08 4.92

1280 4.0391E−05 1.85 2.5001E−09 3.81

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.1015E−03 – 6.3942E−06 –
320 4.5735E−04 2.20 1.6593E−06 1.95
640 1.1380E−04 2.01 4.3716E−08 5.25

1280 3.1276E−05 1.86 2.2722E−09 4.27
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Table 13
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.5 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = λ2 = 1. The dimension of 
the set of basis functions is N 0 + N 1 = 44.

N E: DPM2 Rate E: DPM4 Rate

160 2.8085E−02 – 1.4950E−03 –
320 7.2826E−03 1.95 9.7985E−05 3.93
640 1.8663E−03 1.96 6.1284E−06 4.00

1280 4.6748E−04 2.00 3.8400E−07 4.00

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7484E−02 – 1.4435E−03 –
320 6.9980E−03 1.97 7.9235E−05 4.19
640 1.7454E−03 2.00 4.4775E−06 4.15

1280 4.3609E−04 2.00 2.7098E−07 4.05

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.2902E−02 – 9.5395E−04 –
320 5.8477E−03 1.97 5.9434E−05 4.00
640 1.7098E−03 1.77 3.6586E−06 4.02

1280 4.3067E−04 1.99 2.2893E−07 4.00

Table 14
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 0.9, b = 0.3 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = λ2 = 1. The dimension of 
the set of basis functions is N 0 + N 1 = 38.

N E: DPM2 Rate E: DPM4 Rate

160 2.9284E−02 – 1.9136E−03 –
320 7.0108E−03 2.06 8.3014E−05 4.53
640 1.7471E−03 2.00 5.2579E−06 3.98

1280 4.3662E−04 2.00 3.2976E−07 4.00

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7461E−02 – 1.7482E−03 –
320 6.9886E−03 1.97 7.9013E−05 4.47
640 1.7435E−03 2.00 4.4672E−06 4.14

1280 4.3568E−04 2.00 2.8587E−07 3.97

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.3129E−02 – 9.4881E−04 –
320 5.8410E−03 1.99 5.9249E−05 4.00
640 1.4562E−03 2.00 3.6146E−06 4.03

1280 3.6388E−04 2.00 2.2425E−07 4.01

Table 15
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.25 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = λ2 = 1. The dimension of 
the set of basis functions is N 0 + N 1 = 39.

N E: DPM2 Rate E: DPM4 Rate

160 3.5636E−02 – 1.9351E−03 –
320 8.3209E−03 2.10 1.0946E−04 4.14
640 2.0660E−03 2.01 6.7116E−06 4.03

1280 5.0977E−04 2.02 4.2396E−07 3.98

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7462E−02 – 1.7184E−03 –
320 6.9932E−03 1.97 7.9082E−05 4.44
640 1.7448E−03 2.00 4.4704E−06 4.14

1280 4.3595E−04 2.00 2.7059E−07 4.05

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.3272E−02 – 9.5422E−04 –
320 5.8522E−03 1.99 5.9416E−05 4.01
640 1.6288E−03 1.85 3.6767E−06 4.01

1280 4.2909E−04 1.92 2.3031E−07 4.00
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Table 16
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.5 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = 1000 and λ2 = 1. The 
dimension of the set of basis functions is N 0 + N 1 = 44.

N E: DPM2 Rate E: DPM4 Rate

160 2.8085E−02 – 1.4950E−03 –
320 7.2826E−03 1.95 9.7985E−05 3.93
640 1.8663E−03 1.96 6.1284E−06 4.00

1280 4.6748E−04 2.00 3.8400E−07 4.00

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7484E−02 – 1.4435E−03 –
320 6.9980E−03 1.97 7.9235E−05 4.19
640 1.7454E−03 2.00 4.4775E−06 4.15

1280 4.3609E−04 2.00 2.7098E−07 4.05

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.2902E−02 – 9.5395E−04 –
320 5.8477E−03 1.97 5.9434E−05 4.00
640 1.7098E−03 1.77 3.6586E−06 4.02

1280 4.3067E−04 1.99 2.2893E−07 4.00

Table 17
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 0.9, b = 0.3 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = 1000 and λ2 = 1. The 
dimension of the set of basis functions is N 0 + N 1 = 38.

N E: DPM2 Rate E: DPM4 Rate

160 2.9284E−02 – 1.9136E−03 –
320 7.0108E−03 2.06 8.3014E−05 4.53
640 1.7471E−03 2.00 5.2579E−06 3.98

1280 4.3662E−04 2.00 3.2976E−07 4.00

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7461E−02 – 1.7482E−03 –
320 6.9886E−03 1.97 7.9013E−05 4.47
640 1.7435E−03 2.00 4.4672E−06 4.14

1280 4.3568E−04 2.00 2.8587E−07 3.97

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.3129E−02 – 9.4881E−04 –
320 5.8410E−03 1.99 5.9249E−05 4.00
640 1.4562E−03 2.00 3.6146E−06 4.03

1280 3.6388E−04 2.00 2.2425E−07 4.01

Table 18
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.25 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = 1000 and λ2 = 1. The 
dimension of the set of basis functions is N 0 + N 1 = 39.

N E: DPM2 Rate E: DPM4 Rate

160 3.5636E−02 – 1.9351E−03 –
320 8.3209E−03 2.10 1.0946E−04 4.14
640 2.0660E−03 2.01 6.7116E−06 4.03

1280 5.0977E−04 2.02 4.2396E−07 3.98

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7462E−02 – 1.7184E−03 –
320 6.9932E−03 1.97 7.9082E−05 4.44
640 1.7448E−03 2.00 4.4704E−06 4.14

1280 4.3595E−04 2.00 2.7059E−07 4.05

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.3272E−02 – 9.5422E−04 –
320 5.8522E−03 1.99 5.9416E−05 4.01
640 1.6288E−03 1.85 3.6767E−06 4.01

1280 4.2909E−04 1.92 2.3031E−07 4.00
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Table 19
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.5 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = 1 and λ2 = 1000. The 
dimension of the set of basis functions is N 0 + N 1 = 44.

N E: DPM2 Rate E: DPM4 Rate

160 2.8085E−02 – 1.4950E−03 –
320 7.2826E−03 1.95 9.7985E−05 3.93
640 1.8663E−03 1.96 6.1284E−06 4.00

1280 4.6748E−04 2.00 3.8400E−07 4.00

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7484E−02 – 1.4435E−03 –
320 6.9980E−03 1.97 7.9235E−05 4.19
640 1.7454E−03 2.00 4.4775E−06 4.15

1280 4.3609E−04 2.00 2.7098E−07 4.05

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.2902E−02 – 9.5395E−04 –
320 5.8477E−03 1.97 5.9434E−05 4.00
640 1.7098E−03 1.77 3.6586E−06 4.02

1280 4.3067E−04 1.99 2.2893E−07 4.00

Table 20
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 0.9, b = 0.3 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = 1 and λ2 = 1000. The 
dimension of the set of basis functions is N 0 + N 1 = 38.

N E: DPM2 Rate E: DPM4 Rate

160 2.9284E−02 – 1.9136E−03 –
320 7.0108E−03 2.06 8.3014E−05 4.53
640 1.7471E−03 2.00 5.2579E−06 3.98

1280 4.3662E−04 2.00 3.2976E−07 4.00

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7461E−02 – 1.7482E−03 –
320 6.9886E−03 1.97 7.9013E−05 4.47
640 1.7435E−03 2.00 4.4672E−06 4.14

1280 4.3568E−04 2.00 2.8587E−07 3.97

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.3129E−02 – 9.4881E−04 –
320 5.8410E−03 1.99 5.9249E−05 4.00
640 1.4562E−03 2.00 3.6146E−06 4.03

1280 3.6388E−04 2.00 2.2425E−07 4.01

Table 21
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.25 centered at the origin, and the exterior domain 
is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = 1 and λ2 = 1000. The 
dimension of the set of basis functions is N 0 + N 1 = 39.

N E: DPM2 Rate E: DPM4 Rate

160 3.5636E−02 – 1.9351E−03 –
320 8.3209E−03 2.10 1.0946E−04 4.14
640 2.0660E−03 2.01 6.7116E−06 4.03

1280 5.0977E−04 2.02 4.2396E−07 3.98

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7462E−02 – 1.7184E−03 –
320 6.9932E−03 1.97 7.9082E−05 4.44
640 1.7448E−03 2.00 4.4704E−06 4.14

1280 4.3595E−04 2.00 2.7059E−07 4.05

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.3272E−02 – 9.5422E−04 –
320 5.8522E−03 1.99 5.9416E−05 4.01
640 1.6288E−03 1.85 3.6767E−06 4.01

1280 4.2909E−04 1.92 2.3031E−07 4.00
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Table 22
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right) using non-matching grids. The interior domain !2 is the ellipse with a = 1, b = 0.5 centered at the origin, 
and the exterior domain is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = 1
and λ2 = 1. The dimension of the set of basis functions is N 0 + N 1 = 58.

N1 N2 E: DPM2 Rate E: DPM4 Rate

160 40 9.4441E−02 – 2.1790E−03 –
320 80 7.6122E−03 3.63 9.7015E−05 4.49
640 160 1.8695E−03 2.03 6.1537E−06 3.98

1280 320 4.6884E−04 2.00 3.8517E−07 4.00

N1 N2 E∇x: DPM2 Rate E∇x: DPM4 Rate

160 40 1.2899E−01 – 1.4478E−03 –
320 80 7.0014E−03 4.20 7.9228E−05 4.19
640 160 1.7454E−03 2.00 4.4775E−06 4.15

1280 320 4.3608E−04 2.00 2.7098E−07 4.05

N1 N2 E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 40 4.8685E−02 – 9.6113E−04 –
320 80 5.8527E−03 3.06 5.9424E−05 4.02
640 160 1.7078E−03 1.78 3.6596E−06 4.02

1280 320 4.3147E−04 1.98 2.2897E−07 4.00

Table 23
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right) (using the same grids for domain !1 and !2). The interior domain !2 is the ellipse with a = 1, b = 0.5
centered at the origin, and the exterior domain is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with 
material coefficients λ1 = 1 and λ2 = 1. The dimension of the set of basis functions is N 0 + N 1 = 58.

N E: DPM2 Rate E: DPM4 Rate

160 2.8082E−02 – 1.4974E−03 –
320 7.2795E−03 1.95 9.7989E−05 3.93
640 1.8656E−03 1.96 6.1285E−06 4.00

1280 4.6731E−04 2.00 3.8400E−07 4.00

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7484E−02 – 1.4435E−03 –
320 6.9980E−03 1.97 7.9235E−05 4.19
640 1.7454E−03 2.00 4.4775E−06 4.15

1280 4.3609E−04 2.00 2.7098E−07 4.05

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.2902E−02 – 9.5397E−04 –
320 5.8477E−03 1.97 5.9435E−05 4.00
640 1.7061E−03 1.78 3.6586E−06 4.02

1280 4.3069E−04 1.99 2.2893E−07 4.00

Table 24
Grid convergence in the approximate solution using mixed-order DPM (!1
is the fourth-order and !2 is the second-order). The interior domain !2 is 
the ellipse with a = 1, b = 0.5 centered at the origin, and the exterior do-
main is !1 = [−2, 2] × [−2, 2]\!2. Test problem (6.10), (6.12) with material 
coefficients λ1 = 1 and λ2 = 1. The dimension of the set of basis functions 
is N 0 + N 1 = 61.

N E: DPM Rate

160 1.5116E−03 –
320 1.0125E−04 3.90
640 1.1996E−05 3.08

1280 2.6518E−06 2.18

Again, we employ for DPM the following auxiliary domains in Tables 22–26:

!0
1 ≡ !0

2 = [−2,2] × [−2,2].

6.4. Second-order (DPM2) and fourth-order (DPM4): example of application

In this section we illustrate robustness of the developed methods by considering the linear static model of biological 
cell electropermeabilization which arises in Biological/Biomedical applications. The model under consideration (6.13)–(6.16)



88 J. Albright et al. / Applied Numerical Mathematics 111 (2017) 64–91

Table 25
Corresponding errors in the discrete gradient using mixed-order DPM.

N E∇x Rate E∇ y Rate

160 1.4435E−03 – 9.5438E−04 –
320 7.9236E−05 4.19 5.9534E−05 4.00
640 8.3207E−06 3.25 3.6849E−06 4.01

1280 1.6819E−06 2.31 3.5632E−07 3.37

Table 26
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the ellipse with a = 1, b = 0.5 centered at the origin, and the exterior domain is 
!1 = [−2, 2] ×[−2, 2]\!2. Test problem (6.10), (6.12) with material coefficients λ1 = 1 and λ2 = 1. The dimension 
of the set of basis functions is N 0 + N 1 = 61.

N E: DPM2 Rate E: DPM4 Rate

160 2.8076E−02 – 1.4976E−03 –
320 7.2801E−03 1.95 9.7989E−05 3.93
640 1.8656E−03 1.96 6.1285E−06 4.00

1280 4.6731E−04 2.00 3.8400E−07 4.00

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.7484E−02 – 1.4435E−03 –
320 6.9980E−03 1.97 7.9235E−05 4.19
640 1.7454E−03 2.00 4.4775E−06 4.15

1280 4.3609E−04 2.00 2.7098E−07 4.05

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.2902E−02 – 9.5398E−04 –
320 5.8477E−03 1.97 5.9435E−05 4.00
640 1.7061E−03 1.78 3.6586E−06 4.02

1280 4.3068E−04 1.99 2.2893E−07 4.00

is the elliptic interface model. This model describes the induced transmembrane voltage of a biological cell in an external 
electric field. If a cell is exposed to a sufficiently strong electric field, then this produces a strong increase in membrane 
permeability. As a consequence, molecules for which the membrane was impermeable can be transported across the mem-
brane. This phenomenon (known as the electroporation or electropermeabilization) has many applications in biochemistry, 
molecular biology, and medicine, for example in oncology (electrochemotherapy of tumors), see [27].

We consider here a linear static model (6.13)–(6.16) where the electric potentials in both domains do not depend on 
time (see [27] and [14]). The equations (6.13) are subject to interface (6.14)–(6.15) and Dirichlet boundary conditions (6.16):

∇ · (λs∇V s) = 0, s ∈ {1,2} (6.13)

V 1|# − V 2|# = λ2

SL

∂V 2

∂n

∣∣∣
#
, (6.14)

λ1
∂V 1

∂n

∣∣∣
#

− λ2
∂V 2

∂n

∣∣∣
#

= 0, (6.15)

V |∂!1 = V 1|∂!1 , (6.16)

where V s are the electric potentials, λs are the conductivities, (s = 1, 2), n is the outward normal vector, and SL is the 
membrane surface conductivity. The Dirichlet boundary condition (6.16) is given by the analytic solution (6.17)–(6.18) (see 
[14]) at the boundary ∂!1 of the computational domain (i.e. auxiliary domain), see Fig. 8:

V 1(r, θ) =
(
α1r + β1

r

)
cos θ, R1 < r < R2, (6.17)

V 2(r, θ) = α2r cos θ, r < R1. (6.18)

Here, the constants are defined as

α2 = −
((

λ2

SL R1
+ 1 + λ2

λ1

)
R2 +

(
λ2

SL R1
+ 1 − λ2

λ1

)
R2

1

R2

)−1

Ea R2.

α1 = 1
2

(
λ2

SL R1
+ 1 + λ2

λ1

)
α2.

β1 = 1
2

(
λ2

SL R1
+ 1 − λ2

λ1

)
α2 R2

1.
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Fig. 8. Domains of calculation of the analytical and numerical solutions: analytical solution is computed inside of the circle with radius R2. Circle with 
radius R1 is the cell. Analytical solution at the boundary of the computational domain !1 (square with edge L) gives the Dirichlet boundary condition for 
the numerical simulation.

Table 27
Model parameters for analytical solution and numerical simulation.

Variable Symbol Value Unit

Extracellular conductivity λ1 5 S/m
Intracellular conductivity λ2 0.455 S/m
Membrane surface conductivity S L 1.9 S/m2

Cell radius R1 50 µm
Analytic solution domain radius R2 150 µm
Electric field magnitude Ea 400 V/cm
Edge of computational domain L 200 µm

Fig. 9. (a) Comparison of analytical jump and numerical jump over the circle with respect to angle; (b) Numerical solution in !1 and !2.

Above, θ is the corresponding angle at the interface (degenerated membrane), and Ea is the electric field magnitude (the 
electric field is in the positive direction of the x-axis). Parameters in Table 27 are used for both analytical and numerical 
simulation, and are employed from [14].

The difference of the electric potentials (6.14) between cell interior and exterior is explicitly given and draws interest to 
researchers, see [27]. We compared the jump from the numerical simulation with the analytical one, and we observed an 
excellent agreement. Furthermore, from the numerical solution we clearly see that the cell is polarized, see Fig. 9.
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Table 28
Grid convergence in the approximate solution and components of the discrete gradient for DPM2 (left) and DPM4 
(right). The interior domain !2 is the circle with R1 = 5 × 10−5 m centered at the origin, and the exterior 
domain is !1 = [−10−4, 10−4] × [−10−4, 10−4]\!2. Electroporation model problem (6.13)–(6.16) with material 
coefficients λ1 = 5 and λ2 = 0.455. The dimension of the set of basis functions is N 0 + N 1 = 2.

N E: DPM2 Rate E: DPM4 Rate

160 7.9569E−05 – 9.2776E−08 –
320 2.0603E−05 1.95 6.3054E−09 3.88
640 4.9672E−06 2.05 3.8796E−10 4.02

1280 1.2117E−06 2.04 2.1193E−11 4.19

N E∇x: DPM2 Rate E∇x: DPM4 Rate

160 2.8232E−04 – 1.9647E−07 –
320 7.2623E−05 1.96 1.3254E−08 3.89
640 1.8210E−05 2.00 8.5474E−10 3.95

1280 4.5676E−06 2.00 6.1582E−11 3.79

N E∇ y : DPM2 Rate E∇ y : DPM4 Rate

160 2.9191E−04 – 2.5434E−07 –
320 8.4842E−05 1.78 1.6466E−08 3.95
640 2.1394E−05 1.99 1.0334E−09 3.99

1280 5.2856E−06 2.02 8.3343E−11 3.63

We computed the numerical solution along with the discrete gradient using both DPM2 and DPM4. Second-order and 
fourth-order accuracy are recovered in both the solution and the discrete gradient, see Table 28. 

7. Conclusion

In this paper, we developed efficient high-order accurate methods based on Difference Potentials for 2D elliptic models 
with material interfaces. We presented the construction of Difference Potentials Methods with high-order accuracy for single 
domain, and for the interface/composite domain problems with non-matching interface conditions. The numerical discretiza-
tion (for example, numerical methods with different orders of the approximation in different subdomains/domains), as well 
as meshes can be chosen totally independently for each subdomain/domain and the boundaries of the subdomains/inter-
faces do not need to conform/align with the grids. The constructed numerical algorithms are not restricted by the choice of 
boundary conditions, and the main computational complexity of the designed algorithms reduces to the several solutions of 
simple auxiliary problems on regular structured grids. Moreover, 2D numerical experiments clearly illustrate the capability 
of Difference Potentials approach to resolve discontinuities with high-order accuracy at the material interfaces.

For near future research, we plan to develop p- and h-adaptive algorithms based on the Difference Potentials approach 
(including we plan to investigate optimal basis to represent traces at the boundary/interface), as well as extend methods 
here and in [2] to models in heterogeneous media in 2D and 3D domains.
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