On the Solution of the Elliptic Interface Problems by Difference Potentials Method Yekaterina Epshteyn and Michael Medvinsky Abstract Designing numerical methods with high-order accuracy for problems in irregular domains and/or with interfaces is crucial for the accurate solution of many problems with physical and biological applications. The major challenge here is to design an efficient and accurate numerical method that can capture certain properties of analytical solutions in different domains/subdomains while handling arbitrary geometries and complex structures of the domains. Moreover, in general, any standard method (finite-difference, finite-element, etc.) will fail to produce accurate solutions to interface problems due to discontinuities in the model's parameters/solutions. In this work, we consider Difference Potentials Method (DPM) as an efficient and accurate solver for the variable coefficient elliptic interface problems. ### 1 Introduction In this paper, we consider Difference Potentials Method (DPM) as an efficient and accurate solver for variable coefficient elliptic interface problems. DPM can be understood as the discrete version of the method of generalized Calderon's potentials and Calderon's boundary equations with projections in the theory of partial differential equations (PDEs). DPM introduces a computationally simple auxiliary domain. The original domain of the problem is embedded into an auxiliary domain, and the auxiliary domain is discretized using simple structured grids, e.g. Cartesian grids. After that, the main idea of DPM is to define a Difference Potentials operator, and to reformulate the original discretized PDEs (without imposed boundary/interface conditions yet) as equivalent discrete generalized Calderon's boundary equations with projections (BEP). These BEP are supplemented by the given boundary/interface Yekaterina Epshteyn Department of Mathematics, University Of Utah, e-mail: epshteyn@math.utah.edu Michael Medvinsky Department of Mathematics, University Of Utah, e-mail: mmedvin@math.utah.edu conditions (the resulting BEP are always well-posed, as long as the original problem is well-posed), and solved to obtain the values of the solution at the points near the continuous boundary of the original domain (at the points of the discrete grid boundary which approximates the continuous boundary from the inside and outside of the domain). Using the obtained values of the solution at the discrete grid boundary, the approximation to the solution in the original domain is constructed through the discrete generalized Green's formula. *DPM offers geometric flexibility (without the use of unstructured meshes or "body-fitted" meshes), but does not require explicit knowledge of the fundamental solution, is not limited to constant coefficient problems, does not involve singular integrals, and can handle general boundary and/or interface conditions.* The reader can consult [18, 16] and [14, 15] for a detailed theoretical study of the methods based on Difference Potentials, and ([18, 16, 11, 12, 7, 20, 13, 19, 17, 3, 6, 5, 1], etc.) for the recent developments and applications of DPM. In this paper, we extend the work on 1D and 2D elliptic interface problems started in [19, 17, 5] to variable coefficient elliptic interface models in 2D. A more detailed presentation of the methods with different high-order accurate discretizations, as well as the numerical analysis of DPM for the elliptic interface problems will be presented elsewhere [4]. The paper is organized as follows. In Section 2, we introduce the formulation of the problem. Next, in Section 2.1 we briefly describe the main building blocks of the DPM. Finally, we illustrate the performance of the proposed DPM, as well as compare DPM with the Mayo's method [10] and the Immersed Interface Method (IIM) [8, 9] in several challenging numerical experiments in Section 2.2. # 2 Elliptic Interface Problem In this work we consider interface/composite domain problem defined in some bounded domain $D^0 \subset \mathbb{R}^2$: $$L_D u = \begin{cases} L_1 u_{D_1} = f_1(x, y) & (x, y) \in D_1 \\ L_2 u_{D_2} = f_2(x, y) & (x, y) \in D_2 \end{cases}$$ (1) subject to the appropriate interface conditions: $$u_{\overline{D}_1}\Big|_{\Gamma} - u_{\overline{D}_2}\Big|_{\Gamma} = \phi_1(x, y), \quad \frac{\partial u_{\overline{D}_1}}{\partial n}\Big|_{\Gamma} - \frac{\partial u_{\overline{D}_2}}{\partial n}\Big|_{\Gamma} = \phi_2(x, y)$$ (2) and boundary conditions $$u|_{\partial D} = \psi(x, y) \tag{3}$$ where $D_1 \cup D_2 = D$ and $D \subset D^0$, see Fig. 1. Here, we assume L_s , $s \in \{1,2\}$ are the second-order linear elliptic differential operators of the form $$L_s u_{D_s} \equiv \frac{\partial}{\partial x} \left(a_s(x, y) \frac{\partial u_{D_s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(b_s(x, y) \frac{\partial u_{D_s}}{\partial y} \right), \quad s \in \{1, 2\}.$$ The functions $a_s(x,y) \ge 1$ and $b_s(x,y) \ge 1$ are sufficiently smooth and defined in a larger auxiliary subdomains $D_s \subset D_s^0$. The functions $f_s(x,y)$ are sufficiently smooth functions defined in each subdomain D_s . We assume that the continuous problem (1)-(3) is well-posed. Moreover, we assume that the operators L_s are well-defined on some larger auxiliary domain D_s^0 . More precisely, we assume that for any sufficiently smooth functions $f_s(x,y)$ the equations $L_s u_{D_s^0} = f_s(x,y)$ have a unique solution $u_{D_s^0}$ on D_s^0 that satisfy the given boundary conditions on ∂D_s^0 . Fig. 1 Example of an auxiliary domain D^0 , original domains D_1 and D_2 separated by the interface Γ , and the example of the points in the discrete grid boundary set γ for the 5-point stencil of the second-order method. Auxiliary domain D^0 coincides with D here. Note, here and below, the upper/or lower index $s \in \{1,2\}$ is introduced to distinguish between the subdomains. # 2.1 Difference Potentials Method for Interface/Composite Domain Problems Here we discuss the development of high-order methods based on Difference Potentials approach for the elliptic interface/composite domain problem (1)-(3). A more detailed presentation, as well as the numerical analysis of the method will be given elsewhere [4]. Also, the reader can consult [18], [19, 17, 5], [11], etc. for the detailed discussion and some examples of applications of DPM. Let us briefly describe the main steps of the algorithm. Introduction of the Auxiliary Domain: Place the original domains D_s , $s \in \{1,2\}$ in the auxiliary computationally simple domains $D_s^0 \subset \mathbb{R}^2$ that we will choose to be squares. Next, introduce a Cartesian mesh for each D_s^0 , with points $x_j^s = j\Delta x^s, y_k^s = k\Delta y^s, (k, j = 0, \pm 1, ...)$. Let us assume for simplicity that $\Delta x^s = \Delta y^s := h^s$. Select discretization of the continuous model (1), for example here we will consider a finite-difference approximation. Next, define a finite-difference stencil $N_{j,k}^s$ with its center placed at (x_j^s, y_k^s) (like a 5 node "dimension by dimension stencil" for the second-order scheme, or a 9 node "dimension by dimension stencil" for the classical fourth-order scheme, etc.). Additionally, introduce the point sets M_s^0 (the set of all the mesh nodes (x_j^s, y_k^s) that belong to the interior of the original domain D_s), and by $M_s^- := M_s^0 \setminus M_s^+$ (the set of all the mesh nodes (x_j^s, y_k^s) that are inside of the auxiliary domain D_s^0 but don't belong to the interior of the original domain D_s). Define $N_s^+ := \{\bigcup_{j,k} N_{j,k}^s | (x_j^s, y_k^s) \in M_s^+ \}$ (the set of all points covered by the stencil $N_{j,k}^s$ when center point (x_j^s, y_k^s) of the stencil goes through all the points of the set $M_s^+ \subset D_s$). Similarly, define $N_s^- := \{\bigcup_{i,k} N_{i,k}^s | (x_j, y_k) \in M_s^- \}$ (the set of all points covered by the stencil $N_{i,k}^s$ when center point (x_i^s, y_k^s) of the stencil goes through all the points of the set M_s^-). Introduce $\gamma_s := N_s^+ \cap N_s^-$. The set γ_s is called the *discrete grid boundary*. The mesh nodes from set γ_s straddle the boundary ∂D_s . $N_s^0 := \{\bigcup_{i,k} N_{i,k}^s | (x_i^s, y_k^s) \in$ M_s^0 $\subset \overline{D_s^0}$. The sets N_s^0 , M_s^0 , N_s^+ , N_s^- , M_s^+ , M_s^- , N_s^- , N_s^- will be used to develop the method based on the Difference Potentials approach, Fig. 1. **Difference Equations:** The discrete reformulation of the model problem (1) in each auxiliary domain D_s^0 is: solve for $u_{i,k}^s \in N_s^+$ $$L_h^s[u_{i,k}^s] = F_{i,k}^s, \quad (x_i^s, y_k^s) \in M_s^+$$ (4) where $L_h^s[u_{i,k}^s]$ is the discrete linear elliptic operator obtained using finite-difference approximation of order r (for example, the second-order r = 2 or the fourth-order r=4, etc.). $F_{i,k}^s$ denotes the discrete right-hand side. $u_{i,k}^s:\approx u_{D_s}(x_i^s,y_k^s)$. The unknowns are $u_{i,k}^s :\approx u_{D_s}(x_i^s, y_k^s)$, where (x_i^s, y_k^s) is a mesh point of the Cartesian grid. We need to complete the linear system of difference equations (4) with the appropriate choice of the numerical boundary and interface conditions to construct a unique accurate approximation of the continuous problem (1)-(3) in domain D. Thus, to design an efficient algorithm for any type of boundary and interface conditions, we will consider a numerical method based on the idea of the Difference Potentials. Step 1: Construction of a Particular Solution: Denote by $u_{i,k}^s := G_s^h F_{i,k}^s$, $u_{i,k}^s \in$ N_s^+ the particular solution of the discrete problem (4), which we will construct as the solution (restricted to set N_s^+) of the simple auxiliary problem (AP) of the following form: $$L_{h}^{s}[u_{j,k}^{s}] = \begin{cases} F_{j,k}^{s}, & (x_{j}^{s}, y_{k}^{s}) \in M_{s}^{+}, \\ 0, & (x_{j}^{s}, y_{k}^{s}) \in M_{s}^{-}, \end{cases}$$ $$u_{j,k}^{s} = 0, \quad (x_{j}^{s}, y_{k}^{s}) \in N_{s}^{0} \setminus M_{s}^{0}$$ $$(5)$$ $$u_{j,k}^{s} = 0, \quad (x_{j}^{s}, y_{k}^{s}) \in N_{s}^{0} \backslash M_{s}^{0}$$ (6) Step 2: Difference Potentials and Construction of the BEP: We now introduce a linear space V_{γ_s} of all the grid functions denoted by v_{γ_s} defined on γ_s [18], [19, 17, 5], etc. We will extend the value v_{γ_s} by zero to other points of the grid N_s^0 . **Definition 1.** The Difference Potential with any given density $v_{\gamma_s} \in \mathbf{V}_{\gamma_s}$ is the grid function $u_{i,k}^s := \mathbf{P}_{N^+ \gamma_s} v_{\gamma_s}$, defined on N_s^+ , and coincides on N_s^+ with the solution $u_{i,k}^s$ of the simple auxiliary problem (AP) of the following form: $$L_h^s[u_{j,k}^s] = \begin{cases} 0, & (x_j^s, y_k^s) \in M_s^+, \\ L_h^s[v_{\gamma_s}], & (x_j^s, y_k^s) \in M_s^-, \end{cases}$$ (7) $$u_{j,k}^{s} = 0, \quad (x_{j}^{s}, y_{k}^{s}) \in N_{s}^{0} \backslash M_{s}^{0}$$ (8) Here, $\mathbf{P}_{N^+\gamma_s}$ denotes the operator which constructs the Difference Potential $u^s_{j,k} = \mathbf{P}_{N^+\gamma_s} v_{\gamma_s}$ from the given density $v_{\gamma_s} \in V_{\gamma_s}$. The operator $\mathbf{P}_{N^+\gamma_s}$ is the linear operator of the density v_{γ_s} . Hence, it can be easily constructed [19, 17, 5]. We will now state the most important theorem of the method: **Theorem 1.** Density u_{γ_s} is the trace of some solution $u_{j,k}^s \in N_s^+$ to the Difference Equations (4): $u_{\gamma_s} \equiv Tr_{\gamma_s}u_{j,k}^s$, if and only if, u_{γ_s} satisfies Generalized Calderon's Boundary Equations with Projections (BEP) $$u_{\gamma_s} - \mathbf{P}_{\gamma_s} u_{\gamma_s} = G_s^h F_{\gamma_s}, \tag{9}$$ where $G_s^h F_{\gamma_s} := Tr_{\gamma_s}(G_s^h F_{j,k}^s)$ is the trace (or restriction) of the particular solution $G_s^h F_{j,k}^s \in N_s^+$ constructed in (5)-(6) on the grid boundary γ_s , and $\mathbf{P}_{\gamma_s} u_{\gamma_s} := Tr_{\gamma_s}(\mathbf{P}_{N+\gamma_s} u_{\gamma_s})$ is the trace of the Difference Potential $\mathbf{P}_{N+\gamma_s} u_{\gamma_s} \in N_s^+$ in (7)-(8) on the grid boundary γ_s . *Remark:* The BEP (9) are constructed for each subdomain and solved efficiently together with the boundary and interface conditions for the unknown densities u_{γ_s} using the idea of the extension operator for u_{γ_s} , and the spectral approach for the approximation of the Cauchy data $(u^s, \frac{\partial u^s}{\partial n})|_{\partial D_s}$ ([19, 17, 11], etc.). Step 3: Construction of the Approximate Solution to the Model Problem (1)-(3) from the density u_{γ_s} obtained in Step 2: # **Statement 1** (Generalized Green's Formula) The discrete solution $u_{j,k}^s := \mathbf{P}_{N^+\gamma_s} u_{\gamma_s} + G_s^h F_{j,k}^s$ is the approximation to the solution $u_{i,k}^s \approx u^s(x_j^s, y_k^s), (x_j^s, y_k^s) \in N_s^+ \cap D_s$ of the continuous problem (1)-(3). The expected accuracy of the proposed method for domains with the smooth boundaries and under sufficient regularity of the exact solutions will be $O(h^{r-\varepsilon})$ in the discrete Hölder norm of order $2+\varepsilon$ (if the continuous second-order linear elliptic operator L is approximated with r^{th} order of accuracy by the discrete operator L_h), [15, 14, 18], [4] and Section 2.2. Here, $0<\varepsilon<1$ is an arbitrary small number. #### 2.2 Numerical Examples In the numerical examples below, we consider a secondorder centered finite-difference approximation (with 5-node stencil) as the underlying discretization for DPM. The numerical experiments for the fourth-order approximation will be presented elsewhere [4]. The first test problem that we consider here is the prob- Fig. 2 Exact solution to the test problem (13) - (14). lem from the paper [2]: $$\Delta u_{D_s} = f_s(x, y), \quad (x, y) \in D_s, \quad s \in \{1, 2\}$$ (10) where the interface between two subdomains D_1 and D_2 (see Fig. 1) is given by an ellipse with semi-axes (a,b) = (0.9,0.1), and the curvature is $\kappa = -90$ at $(\pm a,0)$ which leads to a quite challenging test [2]. The exact solution here is $$u_1 = \sin x \cos y, \quad u_2 = 0, \tag{11}$$ which is discontinuous at the interface. The results for the test problem (10)-(11) are presented in Table 1, which shows the relative error in the maximum norm of the solution and its derivatives. To match the settings of the numerical experiments in paper [2], we consider auxiliary domains (here and below) $D_1^0 = D_2^0 \equiv D = [-1.1, 1.1] \times [-1.1, 1.1]$ for the subdomains D_1 and D_2 respectively, Fig. 1. Note, that in these settings, $h^1 = h^2 = h$ (however, DPM handles as easily different auxiliary problems/non-matching meshes [19, 17, 6, 5, 1]). As observed from the Table 1 here, and from the Table 1 (bottom), on page 111 in paper [2], the accuracy in the solution for the test problem (10)-(11) obtained by DPM is very close to the accuracy obtained by Mayo's Method and by IIM. But, the accuracy in the derivatives of the solution obtained by DPM is superior to the accuracy obtained by Mayo's Method or IIM. **Table 1** Test problem (10) - (11) with a = 0.9, b = 0.1 from paper [2]. Here h = 0.055 and h = 0.0034 corresponds to N = 20 and N = 320 (half of the number of the subintervals) respectively in Table 1 (bottom), page 111 in [2]. Relative L_{∞} error in the solution and in its derivatives. | h | L_{∞} -error in u | Rate | L_{∞} -error in u_{x} | Rate | L_{∞} -error in u_y | Rate | |---|--|------------------------------|--|------------------------------|--|------------------------------| | 0.055
0.0275
0.0138
0.0069
0.0034 | 3.4368e - 05 $7.2220e - 06$ $1.4932e - 06$ $5.5244e - 07$ $8.3612e - 08$ | 2.25
2.27
1.43
2.72 | 2.6399e - 05 $1.0770e - 05$ $1.6495e - 06$ $5.5440e - 07$ $6.2907e - 08$ | 1.29
2.71
1.57
3.14 | 8.9673e - 05 $1.0713e - 05$ $1.5316e - 06$ $7.0618e - 07$ $7.7577e - 08$ | 3.20
2.81
1.12
3.19 | | 0.0017 | 2.0790e - 08 | 2.01 | 3.4931e - 09 | 4.17 | 2.9627e - 09 | 4.71 | The second test problem is again from [2] and has the same settings as the first test problem (10)-(11), but now the exact solution is defined as: $$u_1 = x^9 y^8, \quad u_2 = 0.$$ (12) The results for this test problem are presented in Table 2. Compared to the DPM results of the previous test problem (10)-(11), the DPM errors for the test problem (10), (12) are much smaller than the errors for Mayo's method and IIM, reported in Table 3, page 113 in [2]. As the last and more challenging test problem, we consider the interface problem with variable coefficients as described below: **Table 2** Test problem (10), (12) with a = 0.9, b = 0.1 from paper [2]. Here h = 0.0275 and h = 0.0017 corresponds to N = 40 and N = 640 (half of the number of the subintervals) respectively in Table 3, page 113 in [2]. Relative L_{∞} error in the solution and its derivatives. | h | L_{∞} -error in u | Rate | L_{∞} -error in u_x | Rate | L_{∞} -error in u_y | Rate | |--------|----------------------------|------|------------------------------|------|------------------------------|------| | 0.0275 | 3.4725e - 04 | | 3.2322e - 04 | | 3.1602e - 04 | | | 0.0138 | 8.6281e - 05 | 1.85 | 4.4379e - 05 | 2.31 | 4.3989e - 05 | 2.84 | | 0.0069 | 2.1469e - 05 | 1.93 | 5.8286e - 06 | 2.40 | 5.8162e - 06 | 2.92 | | 0.0034 | 5.3542e - 06 | 1.96 | 7.4737e - 07 | 2.45 | 7.4825e - 07 | 2.96 | | 0.0017 | 1.3366e - 06 | 1.98 | 9.4637e - 08 | 2.48 | 9.4906e - 08 | 2.98 | $$\frac{\partial}{\partial x} \left(a_s(x, y) \frac{\partial u_{D_s}}{\partial x} \right) + \frac{\partial}{\partial y} \left(b_s(x, y) \frac{\partial u_{D_s}}{\partial y} \right) = f_s(x, y), \quad (x, y) \in D_s, \quad s \in \{1, 2\}$$ (13) where $a_1 = b_1 = 10^6$, $a_2 = (3 + 0.5\sin(2x + y))$ and $b_2 = (2 + 0.5\cos(4x + 3y))$. The interface curve for this problem is again given by the ellipse with semi-axes (a,b) = (0.9,0.1). The exact solution for this test problem (13) is set to $$u_1 = \sin(y^2 x)\sin(x^3 y), \quad u_2 = \sin(2x)\sin(3y).$$ (14) The interface problem (13)-(14) is much more challenging than the previous test problems since it has discontinuous solution at the interface, as well as a large jump ratio between diffusion coefficients in subdomains D_1 and D_2 , Fig. 2. The results for this test problem are presented in Table 3, which shows the relative error of the solution and its derivatives in the maximum norm. As in the previous numerical examples, DPM preserves overall second-order (and even slightly better in the derivative) accuracy in the solution and its derivatives. **Table 3** Test problem (13) - (14) with a = 0.9, b = 0.1. Relative L_{∞} error in the solution and its derivatives. | h | L_{∞} -error in u | Rate | L_{∞} -error in u_{x} | Rate | L_{∞} -error in u_{y} | Rate | |--------|----------------------------|------|--------------------------------|------|--------------------------------|------| | 0.0275 | 4.5671 <i>e</i> – 04 | | 1.3639e - 04 | | 1.3981 <i>e</i> – 03 | | | 0.0138 | 1.1520e - 04 | 1.99 | 2.2087e - 05 | 2.63 | 3.1356e - 04 | 2.16 | | 0.0069 | 2.8329e - 05 | 2.02 | 2.3138e - 06 | 3.25 | 3.5176e - 05 | 3.16 | | 0.0034 | 7.0319e - 06 | 2.01 | 3.1931e - 07 | 2.86 | 4.6670e - 06 | 2.91 | | 0.0017 | 1.7578e - 06 | 2.00 | 4.9421e - 08 | 2.69 | 7.2111e - 07 | 2.69 | **Acknowledgements** We are grateful to Jason Albright and Kyle R. Steffen for the comments that helped to improve the manuscript. The research of Yekaterina Epshteyn and Michael Medvinsky is supported in part by the National Science Foundation Grant # DMS-1112984. ### References - J. Albright, Y. Epshteyn, and K.R. Steffen. High-order accurate difference potentials methods for parabolic problems. *Applied Numerical Mathematics*, August 2014. in press, http://dx.doi.org/10.1016/j.apnum.2014.08.002. - J. Thomas Beale and Anita T. Layton. On the accuracy of finite difference methods for elliptic problems with interfaces. Commun. Appl. Math. Comput. Sci., 1:91–119 (electronic), 2006. - Y. Epshteyn. Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model. *Journal of Scientific Computing*, 53(3):689 – 713, 2012. - Y. Epshteyn and M. Medvinsky. On the analysis of the Difference Potentials Method for the elliptic interface problems. 2014. in preparation. - 5. Y. Epshteyn and S. Phippen. High-Order Difference Potentials Methods for 1D Elliptic Type Models. *Applied Numerical Mathematics*, March 2014. in press, http://dx.doi.org/10.1016/j.apnum.2014.02.005. - Yekaterina Epshteyn. Algorithms composition approach based on difference potentials method for parabolic problems. *Commun. Math. Sci.*, 12(4):723–755, 2014. - E. Kansa, U. Shumlak, and S. Tsynkov. Discrete Calderon's projections on parallelepipeds and their application to computing exterior magnetic fields for FRC plasmas. *J. Comput. Phys.*, 234:172–198, 2013. http://dx.doi.org/10.1016/j.jcp.2012.09.033. - Randall J. LeVeque and Zhi Lin Li. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal., 31(4):1019–1044, 1994 - Randall J. LeVeque and Zhilin Li. Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput., 18(3):709–735, 1997. - Anita Mayo. The fast solution of Poisson's and the biharmonic equations on irregular regions. SIAM J. Numer. Anal., 21(2):285–299, 1984. - 11. M. Medvinsky, S. Tsynkov, and E. Turkel. The method of difference potentials for the Helmholtz equation using compact high order schemes. *J. Sci. Comput.*, 53(1):150–193, 2012. http://dx.doi.org/10.1007/s10915-012-9602-y. - 12. M. Medvinsky, S. Tsynkov, and E. Turkel. High order numerical simulation of the transmission and scattering of waves using the method of difference potentials. *J. Comput. Phys.*, 243:305–322, 2013. - Emmanuel A. Ntumy and Sergey V. Utyuzhnikov. Active sound control in composite regions. *Applied Numerical Mathematics*, (0):–, 2014. - A. A. Reznik. Approximation of surface potentials of elliptic operators by difference potentials. *Dokl. Akad. Nauk SSSR*, 263(6):1318–1321, 1982. - A. A. Reznik. Approximation of surface potentials of elliptic operators by difference potentials and solution of boundary value problems. *Ph.D., Moscow, MPTI*, 1983. - V. S. Ryaben'kiĭ. Difference potentials analogous to Cauchy integrals. Uspekhi Mat. Nauk, 67(3(405)):147–172, 2012. - V. S. Ryaben'kiĭ, V. I. Turchaninov, and E. Yu. Epshteĭn. An algorithm composition scheme for problems in composite domains based on the method of difference potentials. *Zh. Vychisl. Mat. Mat. Fiz.*, (10):1853–1870. - 18. Viktor S. Ryaben'kii. *Method of difference potentials and its applications*, volume 30 of *Springer Series in Computational Mathematics*. Springer-Verlag, Berlin, 2002. Translated from the 2001 Russian original by Nikolai K. Kulman. - 19. V.S. Ryaben'kii, V. I. Turchaninov, and Ye. Yu. Epshteyn. The numerical example of algorithms composition for solution of the boundary-value problems on compound domain based on difference potential method. *Moscow, Keldysh Institute for Applied Mathematics, Russia Academy of Sciences*, (3), 2003. http://library.keldysh.ru/preprint.asp?lg=&id=2003-3. - V.S. Ryaben'kii and S. Utyuzhnikov. An algorithm of the method of difference potentials for domains with cuts. Applied Numerical Mathematics, http://dx.doi.org/10.1016/j.apnum.2014.02.007, 2014.