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We compare several local absorbing boundary conditions for solving the Helmholtz equa-
tion, by a finite difference or finite element method, exterior to a general scatterer. These
boundary conditions are imposed on an artificial elliptical or prolate spheroid outer sur-
face. In order to compare the computational solution with an analytical solution, we con-
sider, as an example, scattering about an ellipse. We solve the Helmholtz equation with
both finite differences and finite elements. We also introduce a new boundary condition
for an ellipse based on a modal expansion.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

We consider scattering exterior to an n-dimensional body based on the Helmholtz equation that describes wave motion
in frequency space
Duþ k2u ¼ 0 exterior to D;

on oD u ¼ uscat þ eik x�d ðsoft bodyÞ;

or
ou
on
¼ o

on
ðuscat þ eik x�dÞ ðhard bodyÞ;

lim
r!1

r
n�1

2
ouscatðxÞ

or
� ikuscatðxÞ

� �
¼ 0 Sommerfeld radiation condition:

ð1Þ
For a numerical solution one needs to truncate the unbounded domain and introduce an artificial surface with a boundary
condition to prevent reflections of outgoing waves into the domain. This artificial surface is, in general, convex. We consider
local absorbing boundary conditions (ABC) that link only nearby neighbors of a boundary point. Bayliss and Turkel [8] and
later with Gunzburger (BGT) [9] constructed a sequence of absorbing boundary conditions, for the wave equation, based on
matching terms in an expansion in the inverse radius 1

R. Since the condition is written in polar coordinates, it is most con-
venient when the outer surface is a circle or sphere. The most popular is BGT2 which contains a first order normal derivative
and a second order tangential derivative and can be easily implemented in both finite differences and finite elements.

When the convex hull of the scatterer is not similar in shape to a circle or a sphere, using an outer surface which is a
circle or a sphere artificially enlarges the domain of integration. Such a choice wastes both storage and computer time. For
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a wave-like equation, this can also aggravate the phase or pollution error [10,39]. When considering boundary conditions
imposed directly on the scatterer then one has no choice of the shape of the boundary. We stress that for outer artificial
surfaces even though one wishes to minimize the extra points in the domain, nevertheless, one can choose a shape that is
convenient computationally and not one that exactly matches the scatterer. Hence, for many objects, such as submarines
or other oval-shaped scatterers one can choose the outer surface as an ellipse or a prolate spheroid without excessive
waste. This also holds for non-convex scatterers. Many attempts have been made to consider an ABC for general shapes.
These have been frequently based either on a series expansion in some generalized radius, or wave number. Other ap-
proaches are based on a modal expansion or an approximation to the DtN method. Remarkably, most of these approaches
reduced to the BGT condition for a circle or sphere, at least through second order. However, they differ in the boundary
condition constructed for other outer shapes. We focus on the case where the outer surface is an ellipse or a prolate spher-
oid. We compare numerically several approaches. The boundary conditions we compare are those of Grote et al. [19],
Reiner et al. [38], Kriegsmann et al. [33], Jones et al. [30], Kallivokas et al. [31,32] and Antoine et al. [2]. In order to com-
pare the computational solution with an analytical solution, we use, as a model problem, scattering about an ellipse. How-
ever, the conditions on the outer surface are independent on the shape of the scatterer. Hence, the boundary conditions
expressed for an ellipse can be used for scattering about an arbitrary shaped body for which an outer surface of an ellipse
is reasonable. Similarly, in three dimensions, one can adapt the various OSRC models for a prolate spheroid to an artificial
surface for a volumetric method.

In Section 2, we review several absorbing boundary conditions and comment on their derivation. Then we consider a new
ABC for an elliptic outer surface based on a modal expansion in Mathieu functions. We comment on the three-dimensional
and time-dependent cases. In Section 3, we compare numerically this new ABC with the other boundary conditions.

2. Absorbing boundary condition (ABC)

The Helmholtz equation exterior to a body is well-posed only if one adds a Sommerfeld radiation condition which gives
the behavior of the solution as the domain goes to infinity. To numerically solve the Helmholtz equation, the Sommerfeld
radiation condition needs to be replaced by a boundary condition on a surface at a finite distance. For accuracy, this should
cause a small change in the global solution. Small is measured relative to the discretization of the interior scheme. Hence, the
more accurate the interior solution the greater the need for a more accurate ABC. On the other hand, if the interior approx-
imation is no more than (for example) one percent accurate there is no need for a very accurate absorbing boundary condi-
tion. For a given ABC as one refines the grid, the error will decrease according to the order of accuracy of the interior scheme.
However, as the grid is further refined this rate will decrease and then level out as the error of the ABC becomes the major
component of the total error. If one moves the artificial boundary out the error from the ABC is reduced. However, the error
from the interior discretization may increase. Hence, the effect on the total error is unclear.

Several approaches have been suggested for the construction of artificial boundary conditions. One way, pioneered by
Engquist and Majda (EM) [17], is to consider waves that enter or leave the domain and to annihilate those scattered waves
entering the domain from the outside. The exact boundary condition is a pseudo-differential operator. Engquist and Majda
then constructed a sequence of operators, based on a Padé expansion, that are more accurate measured in terms of the angle
of incidence to the exterior boundary. Halpern and Trefethen [24] showed that this amounts to constructing a one-way equa-
tion that only allows propagation from the interior to the exterior [24]. Higdon [27] and later Ditkowski and Gottlieb [15]
have shown that the original Engquist–Majda boundary conditions, when combined with the Helmholtz equation, reduce
to the characteristic equation raised to a power.

A different approach is to construct the artificial boundary condition to match a convergent or asymptotic series to the
solution where the functional form of the terms is known. The boundary condition is constructed to match the first terms
of the outgoing solution. Bayliss and Turkel [8,9] constructed a sequence of such boundary conditions, in a recursive manner,
that are more accurate as the distance to the outer boundary increases. One then uses the interior equation to eliminate ra-
dial derivatives beyond the first in terms of tangential derivatives. The most popular boundary condition has been BGT2
since this involves only second tangential derivatives. Higher order boundary conditions require higher order tangential
derivatives which are not easily implemented with linear finite elements. We shall describe in more detail the Bayliss–Gunz-
burger–Turkel (BGT2) [9] boundary condition based on an expansion in a polar or spherical radial coordinate.

2.1. Two dimensions

In two dimensions the solution to the exterior Helmholtz equation has a convergent expansion
uðr; hÞ ¼ H0ðkrÞ
X1
j¼0

FjðhÞ
ðkrÞj

þ H1ðkrÞ
X1
j¼0

GjðhÞ
ðkrÞj

: ð2Þ
Instead Bayliss et al. worked with the asymptotic expansion
uðr; hÞ �
ffiffiffiffiffiffiffiffi

2
pkr

r
eiðkr�p

2Þ
X1
j¼0

fjðhÞ
ðkrÞj

: ð3Þ
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Matching the two dimensional asymptotic expansion (3) through two terms yields
o

or
� ikþ 5

2r

� �
o

or
� ikþ 1

2r

� �
u ¼ 0 ð4Þ
or
o2u
or2 þ

3
r
� 2ik

� �
ou
or
� k2 þ 3ik

r
� 3

4r2

� �
u ¼ 0: ð5Þ
We now use the Helmholtz equation in polar coordinates
o2u
or2 þ

1
r

ou
or
þ k2uþ 1

r2

o2u

oh2 ¼ 0
to eliminate o2u
or2 . This yields BGT2
ou
or
¼ iku� u

2r
þ u

8r2ð1r � ikÞ
þ 1

2r2ð1r � ikÞ
o2u

oh2 ; ð6aÞ

¼
ð� 3

4þ 3ikr þ 2k2r2Þuþ o2u
oh2

2r2ð1r � ikÞ
: ð6bÞ
Expanding this for large kr we find
ou
or
� ik 1þ i

2kr
þ 1

8ðkrÞ2

 !
uþ 1

2ðkrÞ2
o2u

oh2

" #
kr !1: ð7Þ
Using instead the full convergent expansion (2) one gets [20,34,25,43]
ou
or
¼ k

H00ðkrÞ
H0ðkrÞuþ

H00ðkrÞ
H0ðkrÞ �

H01ðkrÞ
H1ðkrÞ

� �
o2u

oh2

" #
; ð8Þ
where H is the Hankel function of the first kind. However, H00ðzÞ ¼ �H1ðzÞ and H01ðzÞ ¼ H0ðzÞ � 1
z H1ðzÞ. So
ou
or
¼ �k

H1ðkrÞ
H0ðkrÞ uþ

H1ðkrÞ
H0ðkrÞ þ

H0ðkrÞ
H1ðkrÞ �

1
kr

� �
o2u

oh2

" #
: ð9Þ
Using the asymptotic properties of the Hankel functions for large argument the modal expansion agrees with BGT2 (7)

through O 1
ðkrÞ2

� �
for large kr. For high frequencies it is more convenient to use (6a). For low frequencies it is necessary to

use (8), see [43] for more details. For scattering problems [39,1] have shown that BGT is more accurate than EM. Matching
more terms in the expansion does not guarantee that the result is more accurate. However, [9,21,23,18,26] provide theorems
that provide stability and error bounds for some cases.

When the outer surface is not a circle or sphere there are several approaches to generalize the BGT boundary conditions.
One is to use a change of variables and the chain rule to express the r and h derivatives in terms of normal and tangential
derivatives in (6a), (8) to the given outer surface [34–36]. When the outer surface is given analytically an alternative ap-
proach is to rederive the formula based on an expansion for the solution of the Helmholtz equation in terms of coordinates
that give the outer surface to replace BGT2. Another approach is to derive a global formula which couples all the points on
the boundary. One then approximates the integral to get a local boundary condition. This again gives the BGT formula, for a
circle, in terms of the normal and tangential directions [19,20,25]. If the outer surface is an ellipse then the first approach
converts ðr; hÞ derivatives to elliptical coordinates. The second approach derives an asymptotic expansion in terms of
elliptical coordinates and then matches this expansion. For the infinite series the two approaches are the same. However,
since we use only a finite number of terms (usually two) the two approaches differ. In the first approach the assumption
is that the solution is well represented by a few circular waves and this is transformed to elliptical coordinates. In the second
approach the assumption is that the solution is well approximated by the first two elliptical waves. Since these are based on
the outer surface shape rather than the scatterer neither approach is really correct. However, under the assumption that the
shape of the outer surface matches closely the shape of the scatterer it would seem that the second approach would be more
accurate.

We present several extensions of the BGT boundary conditions to more general shapes. Some of these are general and
some refer only to elliptical outer boundaries. An ellipse, n ¼ n0, with semi-major and semi-minor axes a and b respectively
is given parametrically by
x ¼ a cosðgÞ ¼ f coshðn0Þ cosðgÞ y ¼ b sinðgÞ ¼ f sinhðn0Þ sinðgÞ ð10aÞ

f ¼ a2 � b2
: ð10bÞ
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Defining hn ¼ hg ¼ os
og, we have
hn ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ðnÞ � cos2ðgÞ

q
!on ellipse

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � f 2 cos2ðgÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2ðgÞ þ b2 cos2ðgÞ

q

and
ou
on
¼ 1

hn

ou
on

ou
os
¼ 1

hn

ou
og
:

The Helmholtz equation, in elliptical coordinates, is given by
o2u

on2 þ
o2u
og2 þ h2

n k2u ¼ 0 ð11Þ
and the curvature of the ellipse is given by
j ¼ ab

h3
n

:

Grote and Keller [19] and later Thompson, Huan and Ianculescu [42] found that for an ellipse, using an expansion in Mathieu
functions, coupled with a DtN formula the BGT2 condition remains with r replaced by the ellipse-radius f coshðnÞ. This was
also discovered at the same time by Ben-Porat and Givoli [11]. It yields at the ellipse n ¼ n0
o2u

on2 þ a
ou
on
þ bu ¼ 0 ð12Þ
with (using a ¼ f coshðn0Þ; b ¼ f sinhðn0Þ)
a ¼ 3 tanhðn0Þ � 2ikf sinhðn0Þ � cothðn0Þ ¼ 3
b
a
� 2ikb� a

b
;

b ¼ 3
4

tanh2ðn0Þ � ðkf sinhðn0ÞÞ2 � 3ikf sinhðn0Þ tanhðn0Þ ¼
3
4

b2

a2 � k2b2 � 3ik
b2

a
:

They [42] used the Helmholtz equation in elliptical coordinates to eliminate the o2u
on2 derivative. This gives
ou
on
¼ 1

a
ðk2h2

n � bÞuþ o2u
og2

 !
: ð13Þ
Reiner et al. [38] considered an extension of BGT2 for an ellipse based on the condition of Grote and Keller [19]. They used
the Helmholtz equation in polar coordinates to eliminate the second radial derivative substituting r ! f coshðnÞ. They devel-
oped the ABC
ou
on
¼ b

a
ika� 1

2
þ 1

8ð1� ikaÞ

� �
uþ 1

2ð1� ikaÞ
o2u
og2

" #
: ð14Þ
The first to consider more general shapes for the outer boundary was Kriegsmann et al. [33]. They considered the BGT for-
mula for the circle (6a) and formally replaced o

or ! o
on, 1

r ! j where j is the curvature and 1
r2

o2u
oh2 ! o2u

os2 . So they arrived at the
boundary condition
ou
on
¼ iku� ju

2
� j2u

8ðik� jÞ �
1

2ðik� jÞ
o2u
os2 : ð15Þ
Since j ¼ jðsÞ this is not in symmetric form. To recover a symmetric form, Antoine [3] suggested replacing (15) with
ou
on
¼ iku� ju

2
� j2u

8ðik� jÞ �
o

os
1

2ðik� jÞ
ou
os

� �
: ð16Þ
Since Kriegsmann et al. developed (15) purely formally, (16) is just as legitimate as (15). Antoine [3] has shown that for a
finite element method the symmetric form is more accurate. Later Jones [28–30] suggested including derivatives of the
curvature
ou
on
¼ iku� ju

2
� j2u

8ðik� jÞ �
1

2ðik� jÞ
o2u
os2 þ

ik
ik� j

1

8k2

d2j
ds2 uþ 1

2k2

oj
os

ou
os

" #
ð17Þ
which is not in symmetric form. As was done with (15), (16), we obtain a symmetric form by replacing it with
ou
on
¼ ik� j

2
� j2

8ðik� jÞ �
1

8ikðik� jÞ
d2j
ds2

 !
u� o

os
1

2ðik� jÞ
ou
os

� �
: ð18Þ
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Antoine et al. [2] considering a decomposition into incoming and outgoing wave constructed, based on pseudo-differential
operators, an asymptotic expansion in 1

k for general bodies. For the two terms that they calculated, they recovered the BGT
boundary condition for the circle and the sphere. For general two dimensional shapes they derived a full second order
operator
ou
on
¼ iku� ju

2
� j2u

8ðik� jÞ þ
1

8k2

d2j
ds2 u� o

os
1

2ðik� jÞ
ou
os

� �
: ð19Þ
Kallivokas et al. [31,32] considered a geometric optics type expansion and developed a second order absorbing boundary
condition
ou
on
¼ iku� ju

2
� 1

2ðik� jÞ
o2u
os2 þ

1
4
j2u

 !
� 1

2ðik� jÞ2
1
4

d2j
ds2 uþ dj

ds
ou
os

" #

¼ ik� j
2
� j2

8ðik� jÞ �
1

8ðik� jÞ2
d2j
ds2

 !
u� o

os
1

2ðik� jÞ
ou
os

� �
: ð20Þ
The difference between these formulae and the modified Kriegsmann et al. (16) and modified Jones (18) is the coefficient of
the term d2j

ds2 u. The coefficient is � 1
8ikðik�jÞ in (18), 1

8k2 in (19), � 1
8ðik�jÞ2

in (20) and does not appear in (16). Hence, for large k
(relative to the curvature) all these methods are similar. For small k the boundary condition of Antoine et al. becomes infinite
and less accurate. For intermediate wave numbers it is not obvious how they compare.

Another approach is to use the BGT2 condition. Then r and h derivatives are converted to elliptical derivatives using the
chain rule. This leads to a complicated formula. Furthermore a mixed second derivative now appears. Ways of treating this
are discussed in [35]. This approach was tried with the finite difference formula without great success and will not be pur-
sued further. This approach is used in [44] to develop a BGT2 type formula for Cartesian coordinates.

We have given numerous alternatives for the absorbing boundary condition on the artificial boundary both for ellipses
and for general shapes. These boundary conditions are derived based on different assumptions: asymptotic expansions in
a reciprocal elliptical distance, an expansion for large wavenumbers, a geometric optics expansion and finally a change of
variables from the BGT2 formula. Some of these conditions account for the non-constant curvature of the ellipse while others
do not include such terms. However, the validity of the underlying expansion does not guarantee that this leads to an accu-
rate solution, i.e. replacing the Sommerfeld condition at infinity by these conditions at a finite distance leads to a small error
in the numerical solution. There is a paucity of comparisons between these options [14].

In this study we concentrate on absorbing boundary conditions on an outer artificial surface for a volume discret-
ization such as finite difference (FD) or finite element methods (FEM). Another approach introduced by Kriegsmann
et al. [33] is to specify these conditions on the scatterer itself (OSRC). Some extensions to high frequency problems
are given in [12,13,4]. Higher order extension of radiation conditions are examined in [40,45]. A survey of these tech-
niques is given in [5]. A comparison of several of these OSRC boundary conditions is presented in [37]. As seen above
any condition derived as an OSRC can also be applied as an ABC on an artificial bounding surface for a volume
method.

2.2. New absorbing boundary condition

In elliptical coordinates (10a) the Helmholtz equation is given by (11)
o2u

on2 þ
o2u
og2 þ

k2f 2

2
ðcoshð2nÞ � cosð2gÞÞu ¼ 0: ð21Þ
Assume u ¼ wðnÞkðgÞ. Then
d2w
dn2 þ k2f 2

2 coshð2nÞ � l
� �

w ¼ 0;

d2k
dg2 � k2 f 2

2 cosð2gÞ � l
� �

w ¼ 0:

8><
>: ð22Þ
l is separation constant determined so that kðgÞ is periodic which leads to either even or odd solutions with eigenvalues lrðqÞ
for r even, where q is given by
q ¼ k2f 2

4
¼ k2

4
a2 � b2
� �

: ð23Þ
It is not clear which Mathieu functions to choose as the first two functions wi. The ones with the lowest characteristic values
are the first even and then the first odd Hankel-like Mathieu function. However, the exact solution for scattering about an
ellipse with a plane wave at zero angle does not contain any of the odd Mathieu functions (by symmetry). Also, for larger
aspect ratios the first even and the first odd characteristic values are extremely close. Hence, we choose the first two even
Mathieu–Hankel functions, M0ðnÞ;M1ðnÞ with the corresponding characteristic values l0, l1.
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We assume an expansion in functions [34]
uðn;gÞ ¼ k0ðgÞM0ðnÞ þ k1ðgÞM1ðnÞ; ð24aÞ
ou
on
ðn;gÞ ¼ k0ðgÞM0

0ðnÞ þ k1ðgÞM0
1ðnÞ; ð24bÞ

o2u

on2 ðn;gÞ ¼ k0ðgÞM00
0ðnÞ þ k1ðgÞM00

1ðnÞ: ð24cÞ
Solving for k0 and k1 at n ¼ n0 from the first two equations we get
k0 ¼
M0

1u�M1
ou
on

ðM0M0
1 �M0

0M1Þ

�����
n¼n0

k1 ¼ �
M0

0u�M0
ou
on

ðM0M0
1 �M0

0M1Þ

�����
n¼n0

:

Substituting in (24c) one gets
o2u

on2 þ
M1M00

0 �M0M00
1

M0M0
1 �M0

0M1

ou
on
þ ð�M0

1M00
0 þM0

0M00
1Þ

M0M0
1 �M0

0M1
u ¼ 0: ð25Þ
Define
D ¼ M0M0
1 �M1M0

0 T ¼ � D
ðl1 � l0ÞM0M1

¼
M00
M0
� M01

M1

l1 � l0
:

D is a Wronskian of linearly independent solutions and so nonzero.
We note that T is a function of n but not g. Using (25) and (22) for M00

0 and M00
1, we get
o2u

on2 �
ðl1 � l0ÞM0M1

D
ou
on
þ 2q coshð2nÞ � l0 þ

ðl1 � l0ÞM0
0M1

D

� �
u ¼ 0: ð26Þ
We use the Helmholtz equation to eliminate o2u
on2 in terms of o2u

og2. Subtracting (21) from (26) we get
ou
on
¼ T

o2u
og2 þ Tðl0 � 2q cosð2gÞÞ þM0

0

M0

� �
u: ð27Þ
For a slightly different approach see [7]. When coupling this condition with a finite element discretization of the Helmholtz
equation the resulting linear system will be complex symmetric.

2.3. Three dimensions

In three dimensions there is a convergent series given by
uðr; h;/Þ ¼ eikr

kr

X1
j¼0

fjðh;/Þ
ðkrÞj

: ð28Þ
For three dimensions, the BGT2 absorbing boundary condition becomes
ou
or
¼ ðik� 1

r
Þuþ 1

2rð1� ikrÞDsu; ð29Þ
where Ds is the Laplace–Beltrami operator given in spherical coordinates by
Dsu ¼
1

sinð/Þ
o

o/
sinð/Þ ou

o/

� �
þ 1

sin2ð/Þ
o2u

oh2 :
Similar to (8) one can derive an absorbing boundary condition in terms of spherical Hankel functions. Since these reduce to
polynomials for an integer index this boundary condition is identical to (29) [20,25].

For three dimensions, Jones [28] derived
ou
on
¼ ðik�HÞu� i

2k
ðK�H2Þu� divC

1
2ik
ðI� iR

k
ÞrC

� �
u: ð30Þ
Using an expansion in k, based on pseudo-differential operators, Antoine et al. [2] derived
ou
on
¼ ðik�HÞuþ 1

2
ðik� 2HÞ�1ðK�H2Þuþ DCH

4k2 u� divC
1
2
ðikI�RÞ�1rC

� �
u: ð31Þ
To recover the three dimensional generalization of Kriegsmann et al., we would eliminate the term DCH

4k2 u. In these formulae
DC is the Laplace–Beltrami operator on the surface C, rCv denotes the surface divergence of the tangential vector field v,
H ¼ j1þj2

2 is the mean curvature, K ¼ j1j2 is the Gaussian curvature where j1 and j2 are the principal curvatures and R
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is the curvature tensor. The two dimensional and three dimensional absorbing boundary conditions of Antoine et al. have
been implemented in a finite element code for wave scattering about submarine-like bodies in [16,41] respectively. Based
on an analogy with the two dimensional case the boundary condition of Kallivokas et al. [31] would be the same as (31) ex-
cept that the term DCH

4k2 u is replaced by 1
4k2 ð1� 2H

ik Þ
�2DCH � u.

In order to compare the boundary conditions of Jones (30) and Antoine (31), we approximate the boundary condition of
Antoine (31) using 1

1�� ¼ 1þ �þ Oð�Þ2. Then (31) becomes� � � �

ou
on
¼ ðik�HÞuþ 1

2ik
1þ 2H

ik
ðK�H2Þuþ DCH

4k2 u� divC
1

2ik
ðIþR

ik
ÞrC u
or

ou
on
¼ ðik�HÞuþ 1

2ik
ððK�H2Þu� DCuÞ þ 1

k2 HðH2 �KÞuþ 1
4

DCHuþ 1
4

divCðRrCuÞ
� 	

: ð32Þ
We see that (30) and (32) agree through the 1
ik terms with some differences in the 1

k2 terms just as occurred in two dimensions.
The paper of Antoine et al. [2] gives a mathematical justification for many of these techniques.

To derive the modal expansion approximation in three dimensions we again consider (25). We now replace Mj by the first
two (prolate) spheroidal-Hankel functions and use the Helmholtz equation in spheroidal coordinates to eliminate o2u

on2 . For a
slightly different approach see [6].

2.4. Time dependent problems

In this section, we consider the wave equation
o2v
ot2 ¼ c2Dv: ð33Þ
This is converted to the Helmholtz equation by assuming that vðx; tÞ ¼ e�ixtuðxÞ and defining k ¼ x
c . Time derivatives are re-

placed by multiplication by �ix. So any local absorbing boundary condition for the Helmholtz equation that is non-conser-
vative form and has coefficients that are a rational function of ik can be converted to a local boundary condition for the wave
equation by multiplying to remove the denominators. When the boundary condition is in divergence-free form this can not
be done directly since the coefficient is inside the space derivative. Instead we introduce auxiliary variables.

As an example, consider the formula of Kallivokas et al. (20). Define v ¼ 1
ik�j

ou
os. Then (20) can be rewritten as the system
ðik� jÞ2 ou
on
¼ ðik� j

2
Þðik� jÞ � j2

8

� �
ðik� jÞu� 1

8
d2j
ds2 u� ðik� jÞ2

2
ov
os

ðik� jÞv ¼ ou
os
:

This can then be transformed by ik! 1
c

o
ot. Auxiliary variables have previously been used to implement higher order absorb-

ing boundary conditions, see, e.g. [22,32]. The boundary condition of Kriegsmann et al. (15) is much easier to transform to
the time domain. It can be written as
1
c

o

ot
� j

� �
ou
on
¼ 1

c2

o2

ot2 �
3j
2c

o

ot
þ 3j2

8

 !
u� 1

2
o2u
os2 :
From the result section this boundary is the best at least for ellipses. It is well known that the behavior for long times is
determined by the behavior for low frequencies, see, e.g. [21]. In two dimensions, we found that BGT2 does not converge
as the frequency goes to zero. The modal expansion in Hankel functions has a small error for low frequencies in scattering
about a circle. Similarly for scattering about an ellipse, the expansion in Mathieu functions was the only one that has a small
error for small k. However, both the Hankel functions and the Mathieu functions are not rational functions of their argument.
Hence, there is no local way to convert the boundary condition (8) to the time domain rather this is equivalent to a global
boundary condition in time. In three dimensions the expansion in spherical Hankel functions is identical to BGT2. As seen in
the results, BGT2 indeed is reasonable for low frequencies in three dimensions. In this case the error is frequency indepen-
dent (i.e. constant) as k goes to zero for a given scatterer.

Though this does not consist of a proof, nevertheless it indicates that for the wave equation in two space dimensions there
is no local in time boundary condition that converges for long time. However, for three space dimensions the time dependent
BGT2 [8] might be well behaved even for long times. For a more detailed discussion of long term stability for BGT see [21].
3. Results

We first consider scattering by a plane wave about a circle and sphere. We solve the scattering problem with a Dirichlet
boundary condition. The Helmholtz equation is solved by a finite element method with linear rectangular elements in polar/
spherical coordinates (independent of /). The inner circle has radius 1 and the outer circle has radius 2.
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We study the effect of the absorbing boundary condition on the relative error of the far field pattern. In particular, in two
dimensions, we compare the error due to the standard BGT boundary condition (6) with the improvement based on the Han-
kel expansion (8). We change the number of elements in the radial and angular direction. We use 180 samples for the far-
field pattern (FFP), uniformly distributed in ½0;2p�. We display the relative error
Table 1
FFP rela

k

2
1
.1
.01
.001
.0001
.00001

Table 2
FFP rela

k

2
1
.1
.01
.001
.0001
.00001
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
j FFPcompðhiÞ � FFPexactðhiÞj2P

i
j FFPexactðhiÞj2

vuuuut :
We also display the error in the FFP for three dimensional scattering about a sphere.
Comparing the columns of Table 1, we see that BGT2, in two dimensions, is slightly more accurate than the Hankel bound-

ary condition for k ¼ 2. However, for lower wave numbers the modal boundary condition is better. For very low wave num-
bers the BGT2 boundary condition diverges while the Hankel boundary condition gives excellent results, even improving
slowly as the wavenumber goes to zero. The BGT2 error on the fine meshes (40� 240 and 120� 720) is due to the absorbing
boundary condition while with Hankel boundary condition, the error for k 6 0:1 is dominated by the finite element error. To
keep the same level of error as k increases, we need finer meshes. However, in these experiments, we are not trying to keep
the same level of error but to assess the error due to the absorbing boundary condition. The error due to the ABC is decreas-
ing as k decreases. So we need a smaller error from the FEM discretization to assess the error due to the ABC which results in
finer meshes for smaller k. We note that for k ¼ 0 the modal boundary condition (9) is singular and one would need L’Hos-
pital’s rule to evaluate it. Furthermore, for the Laplace equation the Sommerfeld radiation condition is replaced by bound-
edness at infinity.

We next solve the scattering problem by a sphere with a Dirichlet boundary condition. The inner sphere has radius 1 and
the outer sphere has radius 2. We use linear Q1 elements in spherical coordinates. The problem is independent of /. We
change the number of elements in the radial and angular direction. We use 90 samples for the far-field pattern, uniformly
distributed in ½0;p�. As before, Table 2 gives the relative error in the far field pattern. The error due to the ABC is decreasing as
k decreases. The relative error for the FFP for k 6 0:1 is still dominated by the finite element discretization error.

We now consider the problem exterior to an ellipse solved with a finite difference method in elliptical coordinates. The
scatterer and outer artificial surface are concentric ellipses with semi-major axis 1 for the scatterer. The minor axis for the
outer surface is determined so that the inner and outer ellipses have the same f, (10b). The mesh is 150 (radial–elliptical) by
180 (polar–elliptical) nodes. Finer meshes were also used to verify the results were independent of the interior mesh. For the
ABC of Kriegsmann et al. and Jones the original nonsymmetric version (15) and (17) was implemented. The tangential deriv-
atives were rewritten in n;/ coordinates and the curvature term was the analytical value for an ellipse. We compare the solu-
tions when the outer ellipse has a semi-major axis of 1.1 or 1.5. We see a great improvement when the outer surface is not
extremely close to the scatterer. In Tables 3 and 4 we compare several schemes with an aspect ratio of 2 and Dirichlet or
Neumann conditions on the scatterer respectively. The L2 error is then computed on the other, non-specified, portion of
tive error for 2D problem with BGT2

Mesh 40� 240 Mesh 120� 720

BGT2 Hankel ABC BGT2 Hankel ABC

8:076� 10�4 1:272� 10�3 8:278� 10�4 1:264� 10�3

2:231� 10�3 4:983� 10�4 2:2387� 10�3 4:863� 10�4

1:465� 10�1 6:657� 10�6 1:465� 10�1 8:107� 10�7

5:860� 10�1 3:922� 10�6 5:859� 10�1 4:358� 10�7

1.185 2:713� 10�6 1.185 3:015� 10�7

1.836 2:065� 10�6 1.836 2:295� 10�7

2.505 1:664� 10�6 2.505 1:849� 10�7

tive error for 3D problem with BGT2

Mesh 10� 60 Mesh 40� 240 Mesh 120� 720

3:234� 10�3 1:188� 10�3 1:237� 10�3

1:410� 10�3 2:822� 10�4 2:491� 10�4

9:665� 10�4 6:061� 10�5 6:747� 10�6

9:689� 10�4 6:075� 10�5 6:752� 10�6

9:689� 10�4 6:075� 10�5 6:751� 10�6

9:689� 10�4 6:075� 10�5 6:751� 10�6

9:689� 10�4 6:075� 10�5 6:751� 10�6
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the normalized trace. In Fig. 1 we compare all the boundary conditions for an ellipse with aspect ratio 2 and k ¼ 1. The two
subfigures are when the outer surface has a major semi-axis 1.1 and 1.5. In Fig. 2 we repeat the computation but with an
aspect ratio of 10. Finally, in Fig. 3 we consider an aspect ratio of 2 with wavenumber k ¼ 4. The new ABC based on a modal
expansion in Mathieu functions, (27), is the best. Among the standard ABCs, that of Grote and Keller (13), Jones (17), and
Kriegsmann et al. (15) were next best. The ABC of Kriegsmann (15) eliminates the derivative of the curvature and so this
and the Grote and Keller scheme are easy to implement. For higher wavenumbers most of the boundary conditions yield
similar accuracy.

To gain an overview of the impact of the parameters, we compare the new modal boundary condition for various param-
eters when a Neumann boundary condition is specified on the scatterer. For the comparison, we choose the ABC of Kriegs-
mann (15) as a typical and good ABC. We also include the conditions of Jones (17) and Grote and Keller (13). We first
compare them, in Fig. 4(a), as a function of k, for fixed aspect ratio and fixed outer radius. In Fig. 4(b) we fix k ¼ 1 and an
aspect ratio of 2 and see the effect of the position of the outer boundary. In Fig. 5(a), we fix k ¼ 1 and the position of the
outer boundary ða ¼ 1:5Þ and plot the effect of varying the aspect ratio of the scatterer. Finally, in Fig. 5(b), we fix k ¼ 1,
a ¼ 1:5, and an aspect ratio ellipse of 2 and plot the effect of varying the angle of incidence. We see that the angle of inci-
dence has a small effect on the accuracy of the absorbing boundary conditions. In all cases the modal boundary condition is
best or close to the best.
Table 3
FD Dirichlet bc, L2 errors of normalized boundary normal derivative

AR = 2 k = 0.5 k = 1 k = 2 k = 4

Kriegsmann 0.018 0.015 0.009 0.012
Jones 0.016 0.012 0.008 0.012
Antoine 0.037 0.017 0.009 0.012
Kallivokas 0.022 0.015 0.012 0.017
Reiner 0.059 0.038 0.042 0.040
Grote 0.011 0.008 0.008 0.011
Mathieu 0.006 0.007 0.008 0.011

Table 4
FD Neumann bc, L2 errors of normalized boundary solution

AR = 2 k = 1 k = 2 k = 3 k = 4

Kriegsmann 0.012 0.008 0.005 0.007
Jones 0.010 0.006 0.005 0.007
Antoine 0.022 0.009 0.006 0.007
Kallivokas 0.014 0.007 0.007 0.015
Reiner 0.040 0.036 0.048 0.037
Grote 0.015 0.004 0.005 0.005
Mathieu 0.006 0.003 0.005 0.006

Fig. 1. L2 error, Dirichlet bc, k ¼ 1, aspect-ratio-ellipse (AR) = 2.



Fig. 3. L2 error, Dirichlet bc, k ¼ 4, AR = 2.

Fig. 2. L2 error, Dirichlet bc, k ¼ 1, AR = 10.
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We now implement a linear finite element code exterior to a hard (natural boundary condition) elliptical scatterer. We
consider plane wave scattering at 0� angle of incidence. The scatterer has a semi-major axis a ¼ 1 with the semi-minor axis
given. For the outer surface we specify the semi-major axis and the semi-minor axis is determined so that f (10b) is the same
as for the scatterer. A 50� 200 quadrilateral mesh in polar coordinates is used to minimize the discretization error. For k ¼ 4
a 60� 600 mesh is used. The aspect ratio of the scatterer is given in the tables. In these comparisons, we use the following
ABCs: Kriegsmann (16), Jones (18), Antoine (19), Kallivokas (20), Reiner (14), Grote (13), and the modal expansion (27). Now
the bc of Kriegsmann et al. and Jones are the symmetric versions.

We consider an ellipse with aspect ratio 2. The outer ellipse has a semi-major axis of 1.5. In Table 5, we show the error in u
on the inner boundary
uex

uexk k �
ufem

ufemk k












2

while in Table 6, we report the error in the far field pattern (FFP)
FFPex

FFPexk k �
FFPfem

FFPfemk k












2
:

In Table 7, we redo the calculation with the outer artificial ellipse brought in closer to a semi-major axis of 1.1. In Table 8 we
consider an ellipse with a high aspect ratio of 10. We now use a fine 90� 900 mesh to reduce the interior errors.
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Fig. 4. L2 error as a function of various parameters; Neumann bc.
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Fig. 5. L2 error as a function of various parameters; Neumann bc.

Table 5
FEM: relative error for the solution on the inner ellipse

Ellipse (1, 0.5) k ¼ 0:2 k ¼ 1 k ¼ 2 k ¼ 4

Kriegsmann 7:9� 10�2 1:0� 10�2 9:7� 10�3 1:1� 10�2

Jones 2:1� 10�1 2:8� 10�2 1:0� 10�2 1:1� 10�2

Antoine 1:2� 100 3:8� 10�2 1:0� 10�2 1:1� 10�2

Kallivokas 7:2� 10�2 2:3� 10�2 9:7� 10�3 1:1� 10�2

Reiner 5:9� 10�2 1:0� 10�1 1:1� 10�1 9:1� 10�2

Grote 6:0� 10�2 3:0� 10�2 1:6� 10�2 5:2� 10�3

Mathieu 2:1� 10�3 7:0� 10�3 8:9� 10�3 1:3� 10�2
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Similar to the finite difference method the new modal approach (27) is best followed by that of Kriegsmann et al. (16).
Including additional curvature terms only made the error larger. It is possible that the curvature terms become important
if more accurate methods than a linear finite element is used. For large k all the methods gave similar results except for that
of Reiner et al. (14) which was less accurate. Similar conclusions were reached for these boundary conditions used as on sur-
face radiation conditions (OSRC) [37].

The FEM errors are generally larger than the FD ones. We assume that this occurs since the FD calculation is in elliptical
coordinates while the FEM calculation uses polar coordinates. Hence, the elliptical scatterer is only approximated within the
FEM code. There are similar errors at the outer elliptical surface even though the integration is carried out on the artificial
elliptical surface. Occasionally the FFP error was considerably smaller than the error in the solution itself on the inner bound-
ary. This occurs because of cancellations in the integral for the far field pattern. So the small inaccuracies in representing the
ellipse in polar coordinates has a greater effect on the error in the solution than the integrated FFP error.



Table 6
FEM: relative error for the FFP, AR = 2, b = 1.5

Ellipse (1, 0.5) k ¼ 0:2 k ¼ 1 k ¼ 2 k ¼ 4

Kriegsmann 1:9� 10�3 1:7� 10�3 3:7� 10�3 4:1� 10�3

Jones 7:1� 10�2 1:3� 10�2 4:3� 10�3 4:2� 10�3

Antoine 3:7� 10�1 1:7� 10�2 5:0� 10�3 4:2� 10�3

Kallivokas 2:0� 10�2 1:1� 10�2 3:6� 10�3 4:1� 10�3

Reiner 1:9� 10�2 2:6� 10�2 8:3� 10�2 7:4� 10�2

Grote 1:2� 10�2 1:3� 10�2 9:5� 10�3 4:7� 10�3

Mathieu 4:8� 10�5 1:1� 10�3 2:9� 10�3 4:0� 10�3

Table 7
FEM: relative error for the FFP, AR = 2, b = 1.1

Ellipse (1, 0.5) k ¼ 0:2 k ¼ 1 k ¼ 2 k ¼ 4

Kriegsmann 1:8� 10�2 1:7� 10�2 2:8� 10�2 3:4� 10�2

Jones 2:1� 10�1 1:7� 10�1 5:2� 10�2 3:4� 10�2

Antoine 1:8� 10�1 2:5� 10�1 7:1� 10�2 3:5� 10�2

Kallivokas 1:8� 10�1 1:0� 10�1 4:2� 10�2 3:3� 10�2

Reiner 8:7� 10�2 1:1� 10�1 1:3� 10�1 1:7� 10�1

Grote 1:4� 10�1 1:3� 10�1 1:6� 10�1 7:4� 10�2

Mathieu 2:4� 10�4 6:8� 10�3 1:9� 10�2 3:6� 10�2

Table 8
FEM: relative error for the FFP, AR = 10, b = 1.5, 90� 900 mesh

Ellipse (1, 0.5) k ¼ 0:2 k ¼ 1 k ¼ 2 k ¼ 4

Kriegsmann 3:4� 10�4 4:3� 10�4 1:3� 10�3 2:3� 10�3

Jones 6:2� 10�2 1:8� 10�2 2:7� 10�3 2:6� 10�3

Antoine 1:2� 10�1 2:3� 10�2 3:1� 10�3 2:6� 10�3

Kallivokas 1:9� 10�2 1:4� 10�2 2:3� 10�3 2:5� 10�3

Reiner 3:7� 10�3 6:7� 10�3 3:2� 10�2 4:3� 10�2

Grote 3:0� 10�3 4:5� 10�3 3:3� 10�3 3:2� 10�3

Mathieu 7:8� 10�5 6:9� 10�5 8:5� 10�4 1:7� 10�3
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4. Conclusion

In conclusion, the new modal based boundary condition (27) is superior to the others when used both for finite difference
and finite element methods especially for lower frequencies. It remains accurate for high aspect ratios and high angles of
incidence (not shown). Similar conclusions were previously reached for the OSRC approach [37]. For the ABCs based on var-
ious expansions the addition of curvature terms does not improve the accuracy and complicates the formulae. Hence, the
ABC of Kriegsmann et al. is the next most appropriate.
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Appendix. Comment on symmetry of ABC for finite element computations

In this appendix, we comment on the implementation of the absorbing boundary condition when using finite elements.
We divide the ABCs into two categories.

The first set consists of the boundary conditions of Givoli-Keller (13), Reiner et al. (14), and the modal condition (27).
These can all be expressed in the form
hn
ou
on
¼ ou

on
¼ Auþ B

o2u
og2 ð34Þ
with B constant. After multiplication by a test function v and integration over R, we need to compute the integral
I ¼
Z

R

ou
on
ðxÞvðxÞdrðxÞ;
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where R is the outer ellipse with semi-axes ða; bÞ. We parametrize R with the elliptical angular coordinate g:
xðgÞ ¼ a cosðgtÞ yðgÞ ¼ b sinðgÞ:
The integral I becomes
I ¼
Z 2p

0

ou
on
ðxðgÞÞvðxðgÞÞhndg ¼

Z 2p

0
AuðxðgÞÞvðxðgÞÞdgþ

Z 2p

0
B

o2u
og2 ðxðgÞÞvðxðgÞÞdg ð35Þ
and, after integration by parts,
I ¼
Z 2p

0
AuðxðgÞÞvðxðgÞÞdg�

Z 2p

0
B

ou
og
ðxðgÞÞ ov

og
ðxðgÞÞdg:
This last relation shows that the integral I is symmetric as a function of u and v.
The second set consists of the boundary conditions of Kriegsmann et al. (16), Jones (18), Antoine et al. (19), and Kallivokas

et al. (20). All these conditions have the form
ou
on
¼ Au� o

os
B

o

os

� �
or
hn
ou
on
¼ ou

on
¼ hnAu� o

og
B
hn

o

og

� �
: ð36Þ
The expression for I is now
I ¼
Z 2p

0
hnAuðxðgÞÞvðxðgÞÞdg�

Z 2p

0

o

og
B
hn

ou
og
ðxðgÞÞ

� �
vðxðgÞÞdg
and, after integration by parts,
I ¼
Z 2p

0
hnAuðxðgÞÞvðxðgÞÞdgþ

Z 2p

0

B
hn

ou
og
ðxðgÞÞ ov

og
ðxðgÞÞdg:
Here, again, the integral I is symmetric with respect to u and v. Antoine [3] has shown that for a finite element method the
symmetric form is more accurate.
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