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Abstract

We present a comparison of various methods of local absorbing boundary conditions
(ABC) for numerical solutions of the Helmholtz equation exterior to an ellipse. We
also introduce a new boundary condition based on a modal expansion in Mathieu
functions. We compare this new ABC for an outer ellipse with the other boundary
conditions.

Elliptic equations in exterior regions usually require a boundary condition at in-
finity to ensure the well-posedness of the problem. One of the practical applications
is the Helmholtz equation. For computational reasons one needs to truncate the
unbounded domain. Typically, truncation is implemented by the introduction of
an artificial outer domain, together with absorbing boundary conditions along this
domain, that reduce wave reflections into the physical domain. Bayliss with Turkel
[3] and later with Gunzburger [2] presented a sequence of boundary conditions in
polar and spherical coordinates. These boundary conditions were generalized by
several authors when the artificial surface is not a circle or sphere.

In this paper we consider scattering about an ellipse (for which the exact solution
is known). We compare local boundary conditions that link only nearby neighbors
of a boundary point. We consider the 2D Helmholtz equation in frequency space.
We consider On Surface Radiation Conditions (OSRC) and also exterior problems
solved by finite difference algorithm.
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Chapter 1

Introduction

Technologies such as ultrasound, sonar, radar or geophysical exploration deal with
recognition of objects or their properties. It is done by means of the shooting of
an acoustic or electromagnetic wave toward the objects and then investigating the
reflected wave. This is an ill-posed inverse scattering problem that is difficult to
solve, especially from a numerical and computational viewpoint. Usually, to solve
inverse problems one needs an effective method to solve a direct problem. In this
instance, we focus on a direct frequency domain problem.

For example, consider the wave equation

1
c2

∂2v

∂t2
−∆v = 0

When we apply the Fourier transform in time, assuming v = e−iωtu, the wave
equation becomes a Helmholtz equation:

∆u +
ω2

c2
u = ∆u + k2u = 0

Our discussion here concerns the numerical solution of a Helmholtz equation ex-
terior to an ellipse in elliptical coordinates. In Section 1.1 we introduce the elliptical
coordinates, in section Section 1.2 we describe the problem and the Helmholtz equa-
tion, followed by a brief introduction of Mathieu functions in Section 1.3. In Chap-
ter 2 we present various generalizations of the Bayliss-Gunzburger-Turkel (BGT)
boundary condition followed by the new boundary condition in Chapter 3. In Chap-
ter 4 we present details of our implementation, with numerical results of comparison
in Chapter 5, followed by our conclusion in Chapter 6.
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16 CHAPTER 1. INTRODUCTION

1.1 Elliptical Coordinates

In this section we introduce elliptic coordinates (see Figure 1.1 on page 16). Consider
an ellipse in the (x, y) plane that is given by

(
x
a

)2 +
(y

b

)2 = 1 where a, b are the
major and minor semi-axes of the scatterer, respectively.

Figure 1.1: Elliptical Coordinates

The eccentricity of the ellipse is given by e = f
a =

√
1− b2

a2 ∈ [0, 1], where
f =

√
a2 + b2 is the semi-focal distance (the distance from the center to either

focus). The ellipse can be defined by any pair from {a, b, f, e}. The most common
definition of elliptic coordinates (ξ, ϕ), which comes from the real and imaginary
parts of (x + iy) = f cosh(ξ + iϕ), is given by:

{
x = f cosh ξ cosϕ

y = f sinh ξ sinϕ
(1.1)

where ξ ≥ 0 and ϕ ∈ [0, 2π). The parametric representation of the ellipse is given
by (a cosϕ, b sinϕ). Thus, when we fix ξ (ξ = ξj) the semi axes are a = f cosh ξj

and b = f sinh ξj . Fixing ϕ = ϕn then gives us x
cos ϕn

− y
sin ϕn

= cosh ξ − sinh ξ = 1
and the appropriate surface is reduced to a hyperbola.

The following definitions will be used later in this paper. The scale factors, or
metrics, are given by

hξ = hϕ = f

√
sinh2 ξ + sin2 ϕ = f

√
0.5(cosh 2ξ − cos 2ϕ)
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Along the fixed ellipse ξj it becomes

hξ = hϕ =
∂s

∂ϕ
=

√
a2 sin2 ϕ + b2 cos2 ϕ (1.2)

We can now define curvature ζ = ab
h3

ξ
and the normal (n) and tangential (s) deriva-

tives:

∂u

∂n
=

1
hξ

∂u

∂ξ

∂u

∂s
=

1
hϕ

∂u

∂ϕ

1.2 Helmholtz equation

The Helmholtz equation, named for Hermann von Helmholtz, is the elliptic partial
differential equation ∆u + k2u = 0 where ∆ = ∇2 is the Laplacian and k = 2π

λ is
the wave number. Helmholtz equations are used to model a variety of important
physical systems, ranging from heat distribution to the transmission of sound. In
this paper we consider an acoustical scattering problem.

The Helmholtz equation exterior to some body represents wave scattering about
the body at a given frequency. We consider a plane wave propagating through a
homogeneous media and impacting the body. To determine a unique solution to the
scattering problem we choose the Sommerfeld radiation condition (1.5) at infinity.
Physically, this represents the demand that scattered waves cannot enter the domain
from infinity. Formally, the problem for the scattered 2D wave u is described by

∆u + k2u = 0 inΩ (1.3)
{

u = −uinc on ∂Ω
or ∂u

∂n = −∂uinc
∂n on ∂Ω

(1.4)

lim
r→∞ r

1
2

(
∂u

∂r
− iku

)
= 0 (1.5)

where uinc = e−ik(xcosθ+ysinθ) is the incoming plane wave and θ is the incident angle.

When computing wave scattering about a body either in the time domain or
the frequency domain one needs to truncate the unbounded domain and introduce
an artificial surface with an absorbing boundary condition to prevent reflections of
outgoing waves into the domain. We consider local absorbing boundary conditions
(ABCs) that link only nearby neighbors of a boundary point. We shall consider the
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Helmholtz equation in frequency space. Then these boundary conditions are of the
form 0 = Bu =

(
∂u
∂n − iku

)
+ low order correction terms.

Figure 1.2: Scattering

The general curvilinear form of the Laplacian is

∆u =
1

h1h2h3

[
∂

∂u1

(
h2h3

h1

∂

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂

∂u3

)]
u

where the hi are the metrics of the coordinate system. Since in 2D elliptical coor-
dinates we have identical metrics in both directions we have the following form of
Helmholtz equation:

1
h2

ξ

[
∂2

∂ξ2
+

∂2

∂ϕ2

]
u + k2u = 0

Let us show that the Helmholtz equation is separable in elliptical coordinates.
First, rewrite the Helmholtz equation in a more convenient way :

[
∂2

∂ξ2
+

∂2

∂ϕ2

]
u + h2

ξk
2u = 0 (1.6)

Attempting a separation of variables by writing u(ξ, ϕ) = Ψ(ξ)Φ(ϕ) equation 1.6
becomes

Φ
∂2Ψ
∂ξ2

+ Ψ
∂2Φ
∂ϕ2

+ h2
ξk

2ΨΦ = 0

Divide by ΨΦ to get
1
Ψ

∂2Ψ
∂ξ2

+
1
Φ

∂2Φ
∂ϕ2

+ h2
ξk

2 = 0
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Expanding the hξ term

1
Ψ

∂2Ψ
∂ξ2

+
1
Φ

∂2Φ
∂ϕ2

+
f2k2

2
(cosh 2ξ − cos 2ϕ) = 0

allows us to rewrite it in the following form

(
1
Ψ

∂2Ψ
∂ξ2

+
f2k2

2
cosh 2ξ

)
+

(
1
Φ

∂2Φ
∂ϕ2

− f2k2

2
cos 2ϕ

)
= 0

Now we can get the following system

1
Ψ

∂2Ψ
∂ξ2

+
f2k2

2
cosh 2ξ = a

a +
1
Φ

∂2Φ
∂ϕ2

− f2k2

2
cos 2ϕ = 0

where a is the separation variable. Let us define q = f2k2

4 to get the most known
form of this system of equations:

∂2Ψ
∂ξ2

− (a− 2q cosh 2ξ)Ψ = 0 (1.7)

∂2Φ
∂ϕ2

+ (a− 2q cos 2ϕ)Φ = 0 (1.8)

The equations (1.7) and (1.8) are known as the radial and angular Mathieu
equations (RME, AME), respectively. Their solutions are the radial and angular
Mathieu functions (RMFs, AMFs). In the mathematics literature equations (1.7)
and (1.8) are often called modified and ordinary Mathieu equations. The transfor-
mation ϕ 7→ iξ ”modifies” AME to RME and vice versa. The introduction of the
Mathieu functions is given in the next section.

1.3 Mathieu functions

The Mathieu functions were introduced by Emile Mathieu in 1868 [17] when he was
analyzing the movements of membranes of elliptical shape. As was shown in the
previous section, Mathieu equations appear in the solution of Helmholtz equations
in elliptical coordinates. The forms of equations (1.7) and (1.8) were introduced by
Ince [9] and often called the canonical form of the radial (i.e. Modified) and the
angular (i.e. ordinary) Mathieu equations.
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Physical considerations are usually such that AME (equation (1.8)) has periodic
solutions with period π or 2π. The values of a which satisfy this condition are known
as characteristic values (eigenvalues), and they generate an infinite set of real values
which have the property am < am+n : m,n ∈ N1. When the solutions Φ(ϕ) are
even with respect to ϕ = 0, the characteristic values are denoted as am(q) , whereas
for odd solutions they are represented as bm(q).

Since AME (1.8) is a second-order differential equation, there are two families
of independent solutions denoted as the first and the second kind. The even and
odd solutions of the first kind are usually denoted ce and se, as first suggested by
Whittaker and Watson [23], from their relation to the cosine-elliptic and sine-elliptic
respectively. The solutions of the second kind are non periodic.

The Radial Mathieu equation (1.7) plays in elliptic coordinates a similar role as
the Bessel equation in circular coordinates. In this sense, for each Bessel function
[J, N, I, and K] there exists a Radial Mathieu function; however the presence of
even and odd versions in the elliptic case leads to eight RMFs. The solutions of the
first kind are denoted as Ne, No where ’e’ and ’o’ denote even and odd respectively.
The second kind is denoted in a similar way Je, Jo. Our case does not consist of
q < 0, hence we will not deal with I,K, but there is a similar naming convention.

Analogous to Hankel functions H
(1),(2)
m occurring in Bessel equations and circular

cylinder coordinates, there also exist the Mathieu-Hankel functions (Me,Mo) of the
first and second kind, that are also called the third and fourth kind of solution.

Now we can write the solution to the Helmholtz equation in the following way:

u(ξ, ϕ) =
∞∑

n=0

αnMe(1)
n (ξ, q)cen(ξ, q) + βnMo(1)

n (ξ, q)sen(ξ, q) (1.9)

where αn, βn are functions of q, incident angle θ and artificial ellipse ξ0.

1N denote set of natural numbers (non-negative integers)



Chapter 2

Previous work

Bayliss and Turkel (1980) [3] introduced a sequence of boundary conditions for the
Helmholtz equation. They considered an expansion (2.1) of spherical (cylindrical in
2D) waves that asymptotically converge in the reciprocal of the distance.

u ∼
√

2
πkr

ei(kr−π
2
)
∞∑

j=0

fj(θ)
kjrj

(2.1)

Then they designed a sequence of boundary conditions that match higher order
terms in the portion that corresponds to waves leaving the domain. Together with
Gunzburger [2] this was generalized to the frequency domain. Since the series consist
of spherical and cylindrical waves, the terms that appear include the distance from
the origin and also the derivatives in spherical and polar coordinates.

BGT : Bmu =




m∏

j=1

(
∂

∂r
− ik +

2j − 3
2

r

)
u (2.2)

In this work we will be focused on the most popular boundary conditions B1, B2.
Particularly we will write these cases implicitly.

BGT1 :
∂u

∂r
=

(
ik − 1

2r

)
u (2.3)

BGT2 : 0 =
(

∂

∂r
− ik +

5
2r

)(
∂

∂r
− ik +

1
2r

)
u

=
∂2u

∂r2
+

(
−2ik +

3
r

)
∂u

∂r
+

(
3

4r2
− k2 +

3ik

r

)
u

Using the Helmholtz equation in polar coordinates to eliminate ∂2u
∂r2 we get

21
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∂u

∂r
=

1
2

(
ik − 1

r

)
(

3
4r2

− 2k2 +
3ik

r

)
u− 1

2r2
(
ik − 1

r

) ∂2u

∂θ2

=

(
ik − 1

2r
− 1

8r2(ik − 1
r )

)
u− 1

2r2
(
ik − 1

r

) ∂2u

∂θ2
(2.4)

An alternative method was introduced in 1993 by Li and Cendes [15]. They
considered a modal expansion

u ∼
∞∑

n=0

An(θ)Hn(kr) (2.5)

where Hn is an nth order Hankel function of the second kind. Another modal
expansion was used by Givoli and Keller [5]:

u = H0(kr)
∞∑

j=0

fj(θ)
rj

+ H1(kr)
∞∑

j=0

gj(θ)
rj

(2.6)

Both approaches yield the following boundary condition

∂u

∂r
= k

H ′
0(kr)

H0(kr)
u (2.7)

∂u

∂r
= k

[
H ′

0(kr)
H0(kr)

+
(

H ′
0(kr)

H0(kr)
− H ′

1(kr)
H1(kr)

)
∂2u

∂θ2

]
u (2.8)

To reach this boundary condition put σ = r and ψi(kσ) = Hi(kr) in Chapter
3 equation (3.4) and then reduce it using the Hankel equation. The significant
difference between (2.3),(2.4) and (2.7),(2.8) is the accuracy when k is small.

2.1 Various Generalizations of BGT

In this section we present a brief survey of various generalizations of BGT (2.2)
about an ellipse. These generalizations will later be compared with the exact solu-
tion and with the new one. For now we will call a, b the semi-axes of the artificial
elliptical boundary.

2.1.1 Grote and Keller

In 1995 Grote and Keller [7, 6] considered an approach similar to the original BGT
paper [2]. They based their work on an expansion in elliptical waves (2.9) instead
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of the cylindrical expansion (2.1) used by Bayliss et al.

u ∼
√

2
πkf cosh ξ

ei(kf cosh ξ−π
4
)
∞∑

j=0

gj(θ, k)
(kf cosh ξ)j

(2.9)

They found that replacing r → f cosh ξ is the main difference between (2.1) and
(2.9). They then applied this transformation on (2.2) to get

Bmu =




m∏

j=1

(
1

f sinh ξ

∂

∂ξ
− ik +

2j − 3
2

f cosh ξ

)
u (2.10)

BGT1 :
∂u

∂ξ
=

b

a

(
ika− 1

2

)
u (2.11)

BGT2 : 0 =
(

1
f sinh ξ

∂

∂ξ
− ik +

1
2f cosh ξ

)(
1

f sinh ξ

∂

∂ξ
− ik +

5
2f cosh ξ

)
u

=
1
b2

∂2u

∂ξ22 −
1
b2

a

b

∂u

∂ξ
+

(
−2ik +

3
a

)
1
b

∂u

∂ξ
+

(
3

4a2
− k2 − 3ik

a

)
u

=
∂2u

∂ξ2
+

(
−2ikb + 3

b

a
− a

b

)
∂u

∂ξ
+

(
b2

a2

3
4
− k2b2 − 3ikb2

a

)
u

Using Helmholtz equation (1.6) to eliminate ∂2u
∂ξ2 we get

∂u

∂ξ
=

1(−2ikb + 3 b
a − a

b

)
(

∂2u

∂ϕ2
+

(
h2

ξk
2 − b2

a2

3
4

+ k2b2 +
3ikb2

a

)
u

)
(2.12)

2.1.2 Reiner et al.

The simplest method was presented in 2005 by Reiner, Djellouli and Harari [20].
They replace r → f cosh ξ like Grote and Keller [7], but they present a different
form in the case of m = 2. In particular, instead of

∂2u

∂r2
→ 1

b2

∂2u

∂ξ2
− 1

b2

a

b

∂u

∂ξ
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(see (2.12)) they eliminate ∂2u
∂r2 using the Helmholtz equation in polar coordinates

and then replace r → f cosh ξ and θ 7→ ϕ. Hence they get

0 = − 1
a2

∂2u

∂ϕ2
− 1

a2

∂u

∂ξ
− k2u +

(
−2ik +

3
a

)
1
b

∂u

∂ξ
+

(
3

4a2
− k2 +

3ik

a

)
u

= −∂2u

∂ϕ2
− a

b
2 (ika− 1)

∂2u

∂ξ2
+ a2

(
3

4a2
− 2k2 +

3ik

a

)
u

Solving it for ∂u
∂ξ one can get

∂u

∂ξ
=

b

a

(
a2

2 (ika− 1)

(
3

4a2
− 2k2 +

3ik

a

)
u− 1

2 (ika− 1)
∂2u

∂ϕ2

)

=
b

a

((
ika− 1

2
− 1

8 (ika− 1)

)
u− 1

2 (ika− 1)
∂2u

∂ϕ2

)
(2.13)

2.1.3 Kriegsmann et al.

An interesting method was suggested in 1987 by Kriegsmann et al. [14]. They note
that the metrics of polar(spherical) coordinate are hr = 1, hθ = r, so ∂

∂n ≡ ∂
∂r

and ∂
∂s ≡ 1

r
∂
∂θ . Furthermore, the curvature on an artificial circular boundary is

ζ(x, y) = x′y′′−x′′y′
(x′2+y′2)3/2 = (−r sin θ)2+(r cos θ)2

((r sin θ)2+(r cos θ)2)3/2 = 1
r . Hence they get the boundary

condition

BGT1 :
1
hξ

∂u

∂ξ
=

∂u

∂n
=

(
ik − ζ

2

)
u (2.14)

BGT2 :
∂u

∂n
=

(
ik − ζ

2
− ζ2

8(ik − ζ)

)
u− 1

2 (ik − ζ)
∂2u

∂s2
(2.15)

2.1.4 Jones

Later, in 1989, Jin et al. [10] (see also [12]) used (2.15) to study the scattering of
electromagnetic waves by impedance-loaded elliptical cylinders of varying eccentric-
ities. With the radiation impacting in the θ = 0 direction , the accuracy of (2.15)
reduced as b

a becomes small. Jones [11] (see also [12]) used derivatives of curvature
to improve Kriegsmann’s method, and got the following modifications

BGT2 :
∂u

∂n
=

(
ik − ζ

2
− ζ2

8(ik − ζ)

)
u− 1

8ik(ik − ζ)
∂2ζ

∂s2
u−

− 1
2 (ik − ζ)

∂2u

∂s2
− 1

2ik (ik − ζ)
∂ζ

∂s

∂u

∂s
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Thus

∂u

∂n
=

(
ik − ζ

2
− 1

8(ik − ζ)

(
ζ2 +

1
ik

∂2ζ

∂s2

))
u− 1

2(ik − ζ)

(
∂2u

∂s2
+

1
ik

∂ζ

∂s

∂u

∂s

)

(2.16)

2.1.5 Kallivokas et al.

Kallivokas et al. [13] considered a geometric optics-type expansion

u = e−ikχ
∑ fj

(ik + γ)j

where γ is an arbitrary function introduced for dissipation and hence stability.
They defined a sequence of boundary conditions. One of them, the second order
in Kallivokas terminology, when one chooses γ = −ζ, is similar to Kriegsmann’s
BGT2 [see equation (2.15) ]. The following third order condition in Kallivokas’
terminology will be used for the comparisons.

∂u

∂n
=

(
ik − ζ

2
− 1

8 (ik − ζ)

(
ζ2 +

1
(ik − ζ)

∂2ζ

∂s2

))
u−

− 1
2 (ik − ζ)

(
1

(ik − ζ)
∂ζ

∂s

∂u

∂s
+

∂2u

∂s2

)
(2.17)

2.1.6 Antoine et al.

Antoine et al. used an asymptotic expansion in k. Their expansion was based on
pseudo differential operators using a decomposition into incoming and outgoing
waves as an extension of (

√
∆u−ku)(

√
∆u+ku) = ∆u−(ik)2u. For the two terms

that they calculated they recovered the BGT boundary condition for the circle and
the sphere. For an ellipse, in the BGT1 case, the resultant boundary conditions were
similar to Kriegsmann’s (2.14). The elliptical BGT2-like result was the following
boundary condition:

∂u

∂n
=

(
ik − ζ

2
− ζ2

8 (ik − ζ)
+

1
8k2

∂2ζ

∂s2

)
u− ∂

∂s

(
1

2 (ik − ζ)
∂u

∂s

)
(2.18)
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2.1.7 Meade et al.

Meade et al. [19, 18, 16] used the chain rule to translate the original BGT from
polar coordinates to normal-tangential coordinates. We will show here the similar
application of the chain rule directly to elliptical coordinates. Let us write (2.4) in
general form

∂u

∂r
= αu + β

∂2u

∂θ2
(2.19)

where
α = ik − 1

2r
− 1

8r2 (ik − 1/r)

and
β = − 1

2r2 (ik − 1/r)

Applying the chain rule to ∂u
∂ξ and then using (2.19) one can get

∂u

∂ξ
=

∂u

∂r

∂r

∂ξ
+

∂u

∂θ

∂θ

∂ξ
=

(
αu + β

∂2u

∂θ2

)
∂r

∂ξ
+

∂u

∂θ

∂θ

∂ξ
(2.20)

We now want to rewrite (2.20) without derivatives with respect to θ but with
derivatives of u in elliptical coordinates. Thus we use the chain rule again to express
∂
∂θ

∂2u

∂θ2
=

∂

∂θ

(
∂u

∂ξ

∂ξ

∂θ
+

∂u

∂ϕ

∂ϕ

∂θ

)

=
∂2u

∂ξ2

(
∂ξ

∂θ

)2

+ 2
∂2u

∂ϕ ∂ξ

∂ξ

∂θ

∂ϕ

∂θ
+

∂2u

∂ϕ2

(
∂ϕ

∂θ

)2

+
∂2ξ

∂θ2

∂u

∂ξ
+

∂2ϕ

∂θ2

∂u

∂ϕ

Using the elliptical Helmholtz equation to eliminate the ∂2u
∂ξ2 term one gets

∂2u

∂θ2
= (−∂2u

∂ϕ2
− k2h2

ξu)
(

∂ξ

∂θ

)2

+ 2
∂2u

∂ϕ ∂ξ

∂ξ

∂θ

∂ϕ

∂θ
+

+
∂2u

∂ϕ2

(
∂ϕ

∂θ

)2

+
∂2ξ

∂θ2

∂u

∂ξ
+

∂2ϕ

∂θ2

∂u

∂ϕ

= −k2h2
ξu

(
∂ξ

∂θ

)2

+ 2
∂2u

∂ϕ∂ξ

∂ξ

∂θ

∂ϕ

∂θ
+

∂2u

∂ϕ2

((
∂ϕ

∂θ

)2

−
(

∂ξ

∂θ

)2
)

+

+
∂2ξ

∂θ2

∂u

∂ξ
+

∂2ϕ

∂θ2

∂u

∂ϕ
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We apply this result to (2.20)

∂u

∂ξ
= α

∂r

∂ξ
u +

∂ξ

∂θ

∂θ

∂ξ

∂u

∂ξ
+

∂ϕ

∂θ

∂θ

∂ξ

∂u

∂ϕ
+ β

∂r

∂ξ

∂2u

∂θ2

=
∂r

∂ξ

(
α− βh2k2

(
∂ξ

∂θ

)2
)

u +
(

∂ϕ

∂θ

∂θ

∂ξ
+ β

∂r

∂ξ

∂2ϕ

∂θ2

)
∂u

∂ϕ
+

+ 2β
∂r

∂ξ

∂ξ

∂θ

∂ϕ

∂θ

∂2u

∂ϕ ∂ξ
+ β

∂r

∂ξ

∂2u

∂ϕ2

((
∂ϕ

∂θ

)2

−
(

∂ξ

∂θ

)2
)

+

+
∂ξ

∂θ

∂θ

∂ξ

∂u

∂ξ
+ β

∂r

∂ξ

∂2ξ

∂ϕ2

∂u

∂ξ

With simple algebraic manipulations one can write it as

Υ
∂u

∂ξ
=

∂r

∂ξ

(
α− βh2k2

(
∂ξ

∂θ

)2
)

u +
(

∂ϕ

∂θ

∂θ

∂ξ
+ β

∂r

∂ξ

∂2ϕ

∂θ2

)
∂u

∂ϕ
+

+ 2β
∂r

∂ξ

∂ξ

∂θ

∂ϕ

∂θ

∂2u

∂ϕ ∂ξ
+ β

∂r

∂ξ

∂2u

∂ϕ2

((
∂ϕ

∂θ

)2

−
(

∂ξ

∂θ

)2
)

where Υ =
(
1− ∂ξ

∂θ
∂θ
∂ξ − β ∂r

∂ξ
∂2ξ
∂θ2

)
. Next we try to simplify it using the following

identities

• ∂r
∂ξ

∂ξ
∂r + ∂θ

∂ξ
∂ξ
∂θ =

∂r
∂ξ

∂θ
∂ϕ
− ∂θ

∂ξ
∂r
∂ϕ

J = 1

• ∂ϕ
∂r

∂r
∂ξ + ∂ϕ

∂θ
∂θ
∂ξ =

− ∂θ
∂ξ

∂r
∂ξ

+ ∂r
∂ξ

∂θ
∂ξ

J = 0

where J is the Jacobian.

Now we can write Meade’s ABC for elliptical coordinates

∂u

∂ξ
=

1
C

(
Au + B

∂u

∂ϕ
+ D

∂2u

∂ϕ2
+ E

∂2u

∂ϕ ∂ξ

)
(2.21)
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where

A = α− βh2k2

(
∂ξ

∂θ

)2

B = −∂ϕ

∂r
+ β

∂2ϕ

∂θ2

C =
∂ξ

∂r
− β

∂2ξ

∂θ2

D = β

((
∂ϕ

∂θ

)2

−
(

∂ξ

∂θ

)2
)

E = 2β
∂ξ

∂θ

∂ϕ

∂θ

The equation (2.21) is more complicated than the previous ABCs, especially be-
cause of inconvenient mixed derivatives. It is impossible to express ∂2u

∂ϕ ∂ξ in terms of
other terms in (2.21). Meade et al. suggested a few ways to treat mixed derivatives.
The simple one is to ignore the inconvenient term, while the interesting one is to
derive BGT1.

Let us develop the boundary condition that is obtained by this approach. After
applying the chain rule BGT1 becomes

∂u

∂ξ
=

∂u

∂r

∂r

∂ξ
+

∂u

∂θ

∂θ

∂ξ

=
∂r

∂ξ

(
iku− u

2r

)
+

∂θ

∂ξ

(
∂ξ

∂θ

∂u

∂ξ
+

∂ϕ

∂θ

∂u

∂ϕ

)

=
1
ξr

(
iku− u

2r
− ∂ϕ

∂r

∂u

∂ϕ

)

To achieve the last equality one can use the identities listed on the previous
page, 27. Then, we derive it with respect to ϕ and reach

∂2u

∂ϕ ∂ξ
= − 1

ξ2
r

∂2ξ

∂ϕ ∂r

(
iku− u

2r
− ∂ϕ

∂r

∂u

∂ϕ

)

+
1
ξr

((
ik − 1

2r
− ∂ϕ

∂ϕ ∂r

)
∂u

∂ϕ
+

1
2r2

∂r

∂ϕ
u− ∂ϕ

∂r

∂2u

∂ϕ2

)

=
1
ξr

((
ik − 1

2r
− ∂ϕ

∂ϕ ∂r

)
∂u

∂ϕ
+

1
2r2

∂r

∂ϕ
u− ∂ϕ

∂r

∂2u

∂ϕ2
− ∂2ξ

∂ϕ ∂r

∂u

∂ξ

)

Substituting this in (2.21) gives us
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∂u

∂ξ
=

1

C̃

(
Ãu + B̃

∂u

∂ϕ
+ D̃

∂2u

∂ϕ2

)
(2.22)

where

Ã = A + E
1
ξr

1
2r2

∂r

∂ϕ

B̃ = B + E
1
ξr

(
ik − 1

2r
− ∂ϕ

∂ϕ∂r

)

C̃ = C + E
1
ξr

∂2ξ

∂ϕ ∂r

D̃ = D − E
1
ξr

∂ϕ

∂r
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Chapter 3

New Absorbing Boundary

Condition

The original BGT boundary condition was developed from a series in 1
r . For scat-

tering about a circle, an alternative is to use a modal expansion in Hankel functions
[15]. The resultant ABC has coefficients that involve H

(1)
j (kr), j = 0, 1. For large k

this gives results similar to the BGT approach. However, for small wave numbers it
is significantly better. For scattering about an ellipse we consider a modal expan-
sion in Mathieu functions. The resultant ABC has the same structure as before,
but now the coefficients involve Mathieu functions.

Assume an expansion in arbitrary functions [15]:

u = c0ψ0(kσ) + c1ψ1(kσ) (3.1)
∂u

∂σ
= kc0ψ

′
0(kσ) + kc1ψ

′
1(kσ) (3.2)

∂2u

∂σ2
= k2c0ψ

′′
0(kσ) + k2c1ψ

′′
1(kσ) (3.3)

Solving for c0, c1 from the first two equations we get

c0 =
kψ′1u− ψ1

∂u
∂σ

kD

c1 =
kψ′0u− ψ0

∂u
∂σ

kD

where D = ψ0ψ
′
1 − ψ′0ψ1 Substituting it in (3.3) we get

∂2u

∂σ2
+ k

ψ′′0ψ1 − ψ0ψ
′′
1

D

∂u

∂σ
+ k2−ψ′′0ψ′1 + ψ′0ψ

′′
1

D
u (3.4)

31
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For elliptical coordinates, σ = ξ and ψj(kσ) = Mj(ξ) where Mj is a Mathieu-
Hankel function of jth order [see (1.9)]. But, as stated in Section 1.3, there are even
and odd Mathieu-Hankel functions, and hence it is not completely obvious which
Mathieu functions to choose as the first two functions Mj(ξ). However, the exact
solution for scattering about an ellipse with a plane wave at zero angle does not
contain any of the odd Mathieu functions (by symmetry). Also, for larger aspect
ratios the first even and the first odd characteristic values are extremely close.
Hence, we choose two even Mathieu-Hankel functions Mj(ξ) = Mej(ξ), j = 0, 1,
with the corresponding characteristic values a0, a1.

Now (3.4) becomes

0 =
∂2u

∂ξ2
+

M1M
′′
0 −M0M

′′
1

D

∂u

∂ξ
+
−M ′

1M
′′
0 + M ′

0M
′′
1

D
u

with D = M0M
′
1 −M ′

0M1.

One can reduce the M ′′ term using the Mathieu equation

M ′′
n = (an − 2q cosh (2ξ))Mn

Thus

M1M
′′
0 −M0M

′′
1 = M1 (a0 − 2q cosh (2ξ))M0 −M0 (a1 − 2q cosh (2ξ))M1

= (a0 − a1) M0M1

and

−M ′
1M

′′
0 + M ′

0M
′′
1 = −M ′

1 (a0 − 2q cosh (2ξ))M0 + M ′
0 (a1 − 2q cosh (2ξ))M1

= −M0M
′
1a0 + M ′

0M1a1 +
(
M0M

′
1 −M ′

0M1

)
2q cosh (2ξ)

= Da0 −Da0 −M0M
′
1a0 + M ′

0M1a1 + 2Dq cosh (2ξ)

= −Da0 + M ′
0M1 (a1 − a0) + 2Dq cosh (2ξ)

to reach following formula

0 =
∂2u

∂ξ2
+

(a0 − a1) M0M1

D

∂u

∂ξ
+
−Da0 + M ′

0M1 (a1 − a0) + 2Dq cosh (2ξ)
D

u

Now we remove ∂2u
∂ξ2 term using Helmholtz equation (1.6) and get
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0 =
(a0 − a1) M0M1

D

∂u

∂ξ
+

(
−a0 +

M ′
0M1 (a1 − a0)

D
+ 2q cos (2ϕ)

)
u− ∂2u

∂ϕ2

Solving it for ∂u
∂ξ we reach the new boundary condition

∂u

∂ξ
=

D

(a0 − a1) M0M1

(
a0 +

M ′
0M1 (a0 − a1)

D
− 2q cos (2ϕ)

)
u +

+
D

(a0 − a1) M0M1

∂2u

∂ϕ2
(3.5)
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Chapter 4

Numerical Implementation

In this chapter we describe the discretization used for the comparison of our bound-
ary condition with the approaches described in Chapter 2. One wishes that the
outer artificial surface resemble the scatterer to prevent unnecessary interior nodes.
Hence, for oval-like scatterers we consider an elliptical outer surface. In some cases
these boundary conditions were imposed on the scatterer itself (OSRC).

We consider a comparison for both the Dirichlet and Neumann problems, when
absorbing boundary conditions are imposed directly on the ellipse (OSRC) and
exterior to the ellipse (ABC). In the next two sections we will explain the main
points of our implementation.

4.1 ABC on Elliptical Artificial Body

For the boundary condition on the artificial body we consider a finite difference
approximation. For the finite difference discretization we shall construct a linear
system of equations Au = b. For the Neumann problem we compare the solution
u on the internal boundary, while for the Dirichlet problem u is known. Hence, for
the Dirichlet problem, we compare the normal derivative approximated by

(
∂u

∂n

)

1,j

=
−u3,j + 4u2,j − 3u1,j

2δξhξ

on the internal boundary. We will describe the numerical scheme for the Helmholtz
equation with both Dirichlet and Neumann boundary conditions, followed by the
discretization of various ABCs in Section 4.1.1.

35
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We first write the central difference scheme for the Helmholtz equation

ui+1,j − 2ui,j + ui−1,j

δ2
ξ

+
ui,j+1 − 2ui,j + ui,j−1

δ2
ϕ

+ k2h2
i,jui,j = 0

Defining α =
δ2
ξ

δ2
ϕ

we get

(ui+1,j + ui−1,j) + α (ui,j+1 + ui,j−1) +
(
δ2
ξk

2h2
i,j − 2(1 + α)

)
ui,j = 0 (4.1)

In particular, we get the following system:




A1 B1

I A2 I
. . . . . . . . .

I An−1 I

B2 An







u1,↓
...
...
...

un,↓




=




b1

0
...
...
0




where I is the identity matrix, B2 and An define the boundary condition on the
artificial ellipse, an ABC discretization described in Section 4.1.1. A1, b1 define the
boundary condition on the internal ellipse, i.e. type of scattering (soft or hard).
The Ai matrices for 1 < i < n describe the Helmholtz equation with an angular
periodic condition.

Ai =




di,1 α 0 · · · α

α di,2 α 0 · · · 0

0
. . .

...
... α di,n−1 α

α 0 · · · α di,n




(4.2)

where di,j = δ2
ξk

2h2
i,j − 2(1 + α).

For the soft scattering (Dirichlet) problem we have u = −uinc, so A1 = I,B1 = 0
and b = −uinc. For the hard scattering (Neumann) problem we have

u1+1,j − u1−1,j

2δξ
= −∂uinc

∂ξ

Using the Helmholtz equation (4.1) to eliminate u1−1,j we get

−2δξ
∂uinc

∂ξ
= 2u1+1,j + α (u1,j+1 + u1,j−1) + d1,ju1,j
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so we have b1 = −2δξ
∂uinc

∂ξ , B1 = 2I and A1 is similar to that from (4.2).

4.1.1 Discretization of Various ABCs

Let us define B2 and An for ABCs from Chapter 2 and for the new condition.
Particularly, one can see below that B2 = 2I, so we will talk only about coefficients
of

An =




d̂n,1 α̃1 0 · · · α̂1

α̂2 d̂n,2 α̃2 0 · · · 0

0
. . .

...
... α̂n−1 d̂n,n−1 α̃n−1

α̃n 0 · · · α̂n d̂n,n




(4.3)

Grote and Keller

• BGT1 Recall equation (2.11)

∂u

∂ξ
=

b

a

(
ika− 1

2

)
u

for which the central difference scheme it is given by

un+1,j − un−1,j

2δξ
=

b

a

(
ika− 1

2

)
un,j

when the Helmholtz equation (4.1) is used to eliminate the un+1,j term, it
becomes

0 = 2un−1,j + α (un,j+1 + un,j−1) +
(

2δξ
b

a

(
ika− 1

2

)
+ dn,j

)
un,j

from which An members can be defined:

α̃j = α̂j

α̂j = α

d̂n,j = 2δξ
b

a

(
ika− 1

2

)
+ dn,j

• BGT2 Starting from equation (2.12)

∂u

∂ξ
= β

(
∂2u

∂ϕ2
+ γu

)



38 CHAPTER 4. NUMERICAL IMPLEMENTATION

where

β =
(
−2ikb + 3

b

a
− a

b

)−1

and

γ = h2
n,jk

2 − b2

a2

5
4

+ k2b2 +
3ikb2

a

and writing its central difference scheme

un+1,j − un−1,j

2δξ
= β

(
un,j+1 − 2un,j + un,j−1

δ2
ϕ

+ γun,j

)

after eliminating the un+1,j term using the Helmholtz equation (4.1) to get

0 = = α

(
2β

1
δξ

+ 1
)

(un,j+1 + un,j−1)

+
(

2βδξ

(
γ − 2

δ2
ϕ

)
+ dn,j

)
un,j + 2un−1,j

We reach

α̃j = α̂j

α̂j = α

(
2β

1
δξ

+ 1
)

d̂n,j = 2βδξ

(
γ − 2

δ2
ϕ

)
+ dn,j

Reiner et al.

• BGT2 Rewrite equation (2.13)

∂u

∂ξ
=

b

a

(
βu− 1

2 (ika− 1)
∂2u

∂ϕ2

)

where β = ika− 1
2 − 1

8(ika−1) . Using a central difference scheme

un+1,j − un−1,j

2δξ
=

b

a

(
βun,j − 1

2(ika− 1)
un,j+1 − 2un,j + un,j−1

δ2
ϕ

)
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and using the Helmholtz equation (4.1) again to eliminate un+1,j to obtain

0 = 2un−1,j +
(

α− b

a

1
(ika− 1)

δξ

δ2
ϕ

)
(un,j+1 + un,j−1) +

+
(

2δξ
b

a

(
β +

1
(ika− 1) δ2

ϕ

)
+ dn,j

)
un,j

one can define

α̃j = α̂j

α̂j = α− b

a

1
(ika− 1)

δξ

δ2
ϕ

d̂n,j = 2δξ
b

a

(
ika− 1

2
− 1

8 (ika− 1)
+

1
(ika− 1) δ2

ϕ

)
+ dn,j

Kriegsmann et al.

• BGT1 Kriegsmann BGT1 given by (2.14)

1
hξ

∂u

∂ξ
=

∂u

∂n
=

(
ik − ζ

2

)
u

Its central difference scheme given by

un+1,j − un−1,j

2δξ
= hξ

(
ik − ζ

2

)
un,j

Applying it in the Helmholtz equation (4.1) to eliminate un+1,j :

0 = 2un−1,j + α (un,j+1 + un,j−1) +
(

2δξhn,j

(
ik − ζ

2

)
+ dn,j

)
un,j

we arrive at

α̃j = α̂j

α̂j = α

d̂n,j = 2δξhn,j

(
ik − ζ

2

)
+ dn,j

• BGT2 Remember the equation (2.15)

∂u

∂n
=

(
ik − ζ

2
− ζ2

8(ik − ζ)

)
u− 1

2 (ik − ζ)
∂2u

∂s2
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One can use A.2 to abolish the ∂2

∂s2 term to reach the following form

∂u

∂ξ
= hξ

(
ik − ζ

2
− ζ2

8 (ik − ζ)

)
u− hξ

2 (ik − ζ)

(
1
h2

ξ

∂2u

∂ϕ2
− 2Ψ

h2
ξ

∂u

∂ϕ

)

= hξ

(
ik − ζ

2
− ζ2

8 (ik − ζ)

)
u− 1

2hξ (ik − ζ)

(
∂2u

∂ϕ2
− 2Ψ

∂u

∂ϕ

)

where Ψ = f2 sin(2ϕ)
4h2

i,j

Now let us write its central difference scheme

un+1,j − un−1,j

2δξ
= hn,j

(
ik − ζ

2
− ζ2

8 (ik − ζ)

)
− 1

2hn,j (ik − ζ)
×

×
(

un,j+1 − 2un,j + un,j−1

δ2
ϕ

− 2Ψ
un,j+1 − un,j−1

2δϕ

)

= hn,j

(
ik − ζ

2
− ζ2

8 (ik − ζ)
+

1
h2

n,jδ
2
ϕ (ik − ζ)

)
un,j −

− 1
2hn,j (ik − ζ) δϕ

(
1
δϕ
−Ψ

)
un,j+1 −

− 1
2hn,j (ik − ζ) δϕ

(
1
δϕ

+ Ψ
)

un,j−1

We once more want to eliminate the term un+1,j that is still in the Helmholtz
equation (4.1). One can then express the formula as

0 =
(

α−
√

α

hn,j (ik − ζ)

(
1
δϕ
−Ψ

))
un,j+1 +

+
(

α−
√

α

hn,j (ik − ζ)

(
1
δϕ

+ Ψ
))

un,j−1 +

+ 2un−1,j + (2δξhn,jβ + dn,j) un,j

where

β =

(
ik − ζ

2
− ζ2

8 (ik − ζ)
+

1
h2

n,jδ
2
ϕ (ik − ζ)

)
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And we accomplish

α̂j = α−
√

α

hn,j (ik − ζ)

(
1
δϕ

+ Ψ
)

α̃j = α−
√

α

hn,j (ik − ζ)

(
1
δϕ
−Ψ

)

d̂n,j = 2δξhn,j

(
ik − ζ

2
− ζ2

8 (ik − ζ)
+

1
h2

n,jδ
2
ϕ (ik − ζ)

)
+ dn,j

Jones

• BGT2 Consider equation (2.16)

∂u

∂n
= γu− 1

2(ik − ζ)

(
∂2u

∂s2
+

1
ik

∂ζ

∂s

∂u

∂s

)

where γ = ik − ζ
2 − 1

8(ik−ζ)

(
ζ2 + 1

ik
∂2ζ
∂s2

)
. As before, we remove the ∂2

∂s2 term
with A.2 and write it as a central difference scheme

un+1,j − un−1,j

2δξ
= hn,jγun,j − 1

2(ik − ζ)
×

×
(

1
hn,j

un,j+1 − 2un,j + un,j−1

δ2
ϕ

+ 2β
un,j+1 − un,j−1

2δϕ

)

where β = −f sin(2ϕ)
4h3

ξ
+ 1

2ik
∂ζ
∂s .

When the Helmholtz equation (4.1) is used to reduce un+1,j one gets

0 =
(

α−
√

α

(ik − ζ)

(
1

δϕhn,j
+ β

))
un,j+1

+
(

α−
√

α

(ik − ζ)

(
1

δϕhn,j
− β

))
un,j−1

+
(

2δξhn,jγ +
1

hn,j

2δξ

δ2
ϕ

1
(ik − ζ)

+ dn,j

)
un,j + 2un−1,j

And we finish with

α̂j = α−
√

α

(ik − ζ)

(
1

δϕhn,j
− β

)

α̃j = α−
√

α

(ik − ζ)

(
1

δϕhn,j
+ β

)

d̂n,j = 2δξhn,jγ +
1

hn,j

2δξ

δ2
ϕ

1
(ik − ζ)

+ dn,j
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Kallivokas et al.

• BGT2 In similar way to work with (2.17)

∂u

∂n
= βu− 1

2 (ik − ζ)

(
1

(ik − ζ)
∂ζ

∂s

∂u

∂s
+

∂2u

∂s2

)

where β = ik − ζ
2 − 1

8(ik−ζ)

(
ζ2 + 1

(ik−ζ)
∂2ζ
∂s2

)
. Next we eliminate the term ∂2

∂s2

using A.2 and reach the following central difference scheme

un+1,j − un−1,j

2δξ
= hn,j β̃un,j − 1

2 (ik − ζ)
1

hn,jδϕ
×

×
((

1
δϕ

+ γ
1
2

)
un,j+1 +

(
1
δϕ
− γ

1
2

)
un,j−1

)

where β̃ = β + 1
2(ik−ζ)

1
h2

n,j

2uj
i

δ2
ϕ

and γ = 1
(ik−ζ)

∂ζ
∂ϕ + f2 sin(2ϕ)

−2h2
ξ

Once again we apply the Helmholtz equation (4.1) to eliminate un+1,j and
reach

0 = (2δξhn,jβ + dn,j) un,j +

+
(

α−
√

α

(ik − ζ)
1

hn,j

(
1
δϕ

+ γ
1
2

))
un,j+1 +

+
(

α−
√

α

(ik − ζ)
1

hn,j

(
1
δϕ
− γ

1
2

))
un,j−1 + 2un−1,j

And we have

α̂j = α−
√

α

(ik − ζ)
1

hn,j

(
1
δϕ
− γ

1
2

)

α̃j = α−
√

α

(ik − ζ)
1

hn,j

(
1
δϕ

+ γ
1
2

)

d̂n,j = 2δξhn,jβ + dn,j

Antoine et al.

• BGT2 When dealing with equation (2.18)

∂u

∂ξ
= hξβu− ∂

∂ϕ

(
1

2 (ik − ζ)
1
hξ

∂u

∂ϕ

)

where

β = ik − ζ

2
− ζ2

8 (ik − ζ)
+

1
8k2

∂2ζ

∂s2
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we use A.3 to eliminate the ∂
∂ϕ

(
1

2(ik−ζ)
1
hξ

∂u
∂ϕ

)
term. And then we write the

following central difference scheme

un+1,j − un−1,j

2δξ
= hn,jβun,j − 1

2(ik − ζ)
×

×
(

2Υ
un,j+1 − un,j−1

2δϕ
+

1
hn,j

un,j+1 − 2un,j + un,j−1

δ2
ϕ

)

where Υ =
(

1
2(ik−ζ)

∂ζ
∂s − f2 sin(2ϕ)

4h3
i,j

)
. Now we use the Helmholtz equation (4.1)

again to eliminate un+1,j and reach

0 =
(

α−
√

α

(ik − ζ)

(
Υ +

1
hn,jδϕ

))
un,j+1 + 2un−1,j +

+
(

α +
√

α

(ik − ζ)

(
Υ− 1

hn,jδϕ

))
un,j−1 +

+

(
2δξhn,j

(
β +

1
ik − ζ

1
h2

n,j

1
δ2
ϕ

)
+ dn,j

)
un,j

Thus we have

α̂j = α +
√

α

(ik − ζ)

(
Υ− 1

hn,jδϕ

)

α̃j = α−
√

α

(ik − ζ)

(
Υ +

1
hn,jδϕ

)

d̂n,j = 2δξhn,j

(
ik − ζ

2
− ζ2

8(ik − ζ)
+

1
8k2

∂2ζ

∂s2
+

1
ik − ζ

1
h2

n,j

1
δ2
ϕ

)
+ dn,j

Meade et al

• BGT2 We use (2.22)

∂u

∂ξ
=

1

C̃

(
Ãu + B̃

∂u

∂ϕ
+ D̃

∂2u

∂ϕ2

)

where the coefficients are defined on page 29 and the central difference scheme
is given by

ui+1,j − ui−1,j

2δξ
=

1

C̃

(
Ãui,j + B̃

ui,j+1 − ui,j−1

2δϕ
+ D̃

ui,j+1 − 2ui,j + ui,j−1

δ2
ϕ

)
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which can be rewritten as

ui+1,j − ui−1,j

2δξ
=

1

C̃

((
Ã− 2D̃

δ2
ϕ

)
ui,j +

1
δϕ

(
B̃

2
+

D̃

δϕ

)
ui,j+1+

+
1
δϕ

(
D̃

δϕ
− B̃

2

)
ui,j−1

)

We use the Helmholtz equation (4.1) to eliminate un+1,j and get

0 =

(
2
√

α

C̃

(
δϕÃ− 2D̃

δϕ

)
+ dn,j

)
ui,j + 2uj

i−1 +

+

(
2
√

α

C̃

(
D̃

δϕ
+

B̃

2

)
+ α

)
uj+1

i +

(
2
√

α

C̃

(
D̃

δϕ
− B̃

2

)
+ α

)
uj−1

i

and we reach

α̂j = 2
√

α

C̃

(
D̃

δϕ
− B̃

2

)
+ α

α̃j = 2
√

α

C̃

(
D̃

δϕ
+

B̃

2

)
+ α

d̂n,j = 2
√

α

C̃

(
δϕÃ− 2D̃

δϕ

)
+ dn,j

New ABC

Finally, for our method we define µ = D
(a0−a1)M0M1

and ν = M ′
0M1(a0−a1)

D , so that
equation (3.5) becomes

∂u

∂ξ
= µ (a0 + ν − 2q cos (2ϕ)) u + µ

∂2u

∂ϕ2

for which the finite difference scheme reads

un+1,j − un−1,j

2δξ
= µ (a0 + η − 2q cos (2v))ui,j + µ

un,j+1 − 2un,j + un,j−1

δ2
ϕ

Once more we are using the Helmholtz equation (4.1) to eliminate un+1,j , so that
the scheme is given by
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0 =
(

µ
2δξ

δ2
ϕ

+ α

)
(un,j+1 + un,j−1) +

+
(

2δξµ

(
a0 + η − 2q cos (2v)− 2

δ2
ϕ

)
+ dn,j

)
un,j + 2un−1,j

and we finish with

α̂j = α̃j

α̃j = µ
2δξ

δ2
ϕ

+ α

d̂n,j = 2δξµ

(
a0 + η − 2q cos (2v)− 2

δ2
ϕ

)
+ dn,j

4.2 On Surface Radiation Condition

From the Sommerfeld condition one can derive the physical demand that waves not
enter the domain from infinity. On the scatterer body we specify Bu = −Buinc and
also the ABC. This can be viewed [see [1]] as using a degenerate artificial boundary.

For a Dirichlet problem, the implementation of OSRC is straight forward. In
particular, for BGT1-like conditions we apply the operator directly on the incident
(plane) wave. For BGT2-like conditions, where a second derivative in ϕ appears (or,
alternatively, derivatives with respect to arc-length), we use analytical derivatives
of the plane wave for the computation.

For a Neumann problem, ∂u
∂ξ is known, so to retrieve u we have to solve a second

order ordinary differential equation (ODE) described by the boundary condition.
The ODE appears only for BGT2-like conditions, while for BGT1 we have to solve
a simple equation. For this reason we omit here the BGT1 case. We solve the ODE
by finite differences similarly to that used in the previous section. In particular, we
solve the linear system Au = b where b = ∂u

∂ξ and

A =




d1 d+
1 0 · · · d−1

d−2 d2 d+
2 0 · · · 0

0
. . .

...
... d−n−1 dn−1 d+

n−1

d+
n 0 · · · d−n dn




(4.4)

The scheme is similar to that used for the ABC, except that we do not have
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the un+1,j term to eliminate since ∂u
∂ξ is given. Following, we write the d, d+, d− for

different methods.

4.2.1 Discretization of Various ABCs

Grote and Keller

d−j =
β

δ2
φ

d+
j =

β

δ2
φ

dj = γ − 2
δ2
φ

where β =
(−2ikb + 3 b

a − a
b

)−1
and γ = h2

jk
2 − b2

a2
3
4 + k2b2 + 3ikb2

a

Reiner et al.

d−j = − b

a

1
2 (ika− 1)

1
δ2
φ

d+
j = − b

a

1
2 (ika− 1)

1
δ2
φ

dj =
b

a

(
ika− 1

2
− 1

8 (ika− 1)
+

1
(ika− 1)

1
δ2
φ

)

Kriegsmann et al.

d−j = − 1
2hj (ik − ζ) δϕ

(
1
δϕ

+
f2 sin (2ϕ)

4h2
j

)

d+
j = − 1

2hj (ik − ζ) δϕ

(
1
δϕ
− f2 sin (2ϕ)

4h2
j

)

dj = hj

(
ik − ζ

2
− ζ2

8 (ik − ζ)
+

1
h2

jδ
2
φ (ik − ζ)

)
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Jones

d−j = − 1
2hξ (ik − ζ) δϕ

(
1
δϕ
−

(
1

2ik

∂ζ

∂ϕ
− f2 sin (2ϕ)

4h2
j

))

d+
j = − 1

2hξ (ik − ζ) δϕ

(
1
δϕ

+

(
1

2ik

∂ζ

∂ϕ
− f2 sin (2ϕ)

4h2
j

))

dj = hj

(
ik − ζ

2
− 1

8 (ik − ζ)

(
ζ2 +

1
ik

∂2ζ

∂s2

)
+

1
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Meade et al.
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Chapter 5

Numerical Results

In the following discussion we present numerical results for the comparison of meth-
ods described in Chapter 21 and Chapter 3. One wishes that the outer artificial
surface resemble the scatterer to prevent unnecessary interior nodes. Hence, for
oval-like scatterers we consider an elliptical outer surface. In some cases these
boundary conditions were imposed on the scatterer itself (OSRC).

Until now, we have referred to a, b as the semi-axes of the artificial elliptical
boundary. Hereafter, a, b represents the semi-axes of the internal boundary ellipse.

In all cases the major axis is a = 1 and we vary the minor axis b. All figures
below present the solution at 180◦ or 185 ◦ [i.e. behind the ellipse in (or near) the
shadow region, in other words the incident angle θ = 0◦ or θ = 5◦ respectively].
The specific incident angle (θ) and aspect ratio (AR = a

b ) appears in the capture
of each figure. We compute the L2-error on the scatterer between the approximate
solutions and the exact one. For the Dirichlet problem the solution on the scatterer
is given by the incoming wave, and so we compare the normal derivative there, while
for the Neumann problem the normal derivative on the scatterer is known and we
compare the solution itself.

In Section 5.1 we present a comparison of the approximate solution for the On
Surface Radiation Condition, followed by a comparison of the Absorbing Boundary
Condition in Section 5.2.

1Here and later in this chapter we omit Meade’s method, because we had very poor results and
it was not clear if this problem was due to our implementation, some numerical problem or the
problem of the method itself. Thus we cannot develop an objective discussion about these results.
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5.1 On Surface Radiation Condition

In this section we consider various absorbing boundary conditions described in
Chapter 2 imposed directly on the scattering ellipse (OSRC). The next two sub-
sections present the results for Dirichlet and Neumann conditions on an elliptical
scatterer.

5.1.1 Dirichlet Condition

Let us start with the Dirichlet problem with an incident angle θ = 0. In Figures 5.1
and 5.2 on page 50 we compare several methods with the exact solution for various
wave numbers (k = 1, 2, 3, 4) and an aspect ratio

(
a
b

)
= 10. The L2 error between

the approximate normal derivative of the solutions and the exact one is given in the
legend. The errors of all the OSRC results for θ = 0 also can be found in Table 5.1
on page 54. In Figures 5.3 and 5.4 on page 51 we consider the same wave numbers
but with an aspect ratio 3.3, in Figures 5.5 and 5.6 on page 52 the aspect ratio is
2, in Figures 5.7 and 5.8 on page 52 the aspect ratio is 1.4, and in Figures 5.9 and
5.10 on page 53 the aspect ratio is 1.1.

(a) k=1 (b) k=2

Figure 5.1: OSRC Dirichlet bc, k = 1, 2, AR=10 and θ = 0◦
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(a) k=3 (b) k=4

Figure 5.2: OSRC Dirichlet bc, k = 3, 4, AR=10 and θ = 0◦

(a) k=1 (b) k=2

Figure 5.3: OSRC Dirichlet bc, k = 1, 2, AR=3.3 and θ = 0◦

(a) k=3 (b) k=4

Figure 5.4: OSRC Dirichlet bc, k = 3, 4, AR=3.3 and θ = 0◦
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(a) k=1 (b) k=2

Figure 5.5: OSRC Dirichlet bc, k = 1, 2, AR=2 and θ = 0◦

(a) k=3 (b) k=4

Figure 5.6: OSRC Dirichlet bc, k = 3, 4, AR=2 and θ = 0◦

(a) k=1 (b) k=2

Figure 5.7: OSRC Dirichlet bc, k = 1, 2, AR=1.4 and θ = 0◦
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(a) k=3 (b) k=4

Figure 5.8: OSRC Dirichlet bc, k = 3, 4, AR=1.4 and θ = 0◦

(a) k=1 (b) k=2

Figure 5.9: OSRC Dirichlet bc, k = 1, 2, AR=1.1 and θ = 0◦

(a) k=3 (b) k=4

Figure 5.10: OSRC Dirichlet bc, k = 3, 4, AR=1.1 and θ = 0◦
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(a) Aspect ratio = 10

k = 1 k = 2 k = 3 k = 4
Grote 1.698167 1.682620 1.663030 1.643526
Reiner 0.477691 0.621664 0.684807 0.712769
Kriegsmann 0.871846 0.859938 0.830644 0.800266
Jones 1.663419 1.679475 1.691250 1.701557
Kallivokas 1.049311 1.133602 1.187688 1.231029
Antoine 1.682464 1.660473 1.648922 1.640055
Mathieu 0.073203 0.164564 0.270321 0.417518

(b) Aspect ratio = 3.3

k = 1 k = 2 k = 3 k = 4
Grote 1.625111 1.418146 1.217227 1.037886
Reiner 0.346708 0.437734 0.468637 0.473207
Kriegsmann 0.533451 0.410173 0.354216 0.331366
Jones 1.724184 1.740937 1.724938 1.677681
Kallivokas 1.235455 1.375885 1.427826 1.421557
Antoine 1.657684 1.615694 1.576186 1.524033
Mathieu 0.061860 0.114928 0.164027 0.229203

(c) Aspect ratio = 2

k = 1 k = 2 k = 3 k = 4
Grote 1.118339 0.690395 0.471381 0.346887
Reiner 0.228771 0.282275 0.298277 0.296918
Kriegsmann 0.243895 0.192966 0.190528 0.198767
Jones 1.416620 0.635669 0.320338 0.238883
Kallivokas 0.868737 0.450220 0.280967 0.233479
Antoine 1.447359 0.854357 0.390827 0.262040
Mathieu 0.057951 0.089575 0.113563 0.142629

(d) Aspect ratio = 1.4

k = 1 k = 2 k = 3 k = 4
Grote 0.323988 0.231774 0.171692 0.145721
Reiner 0.131994 0.164993 0.179526 0.183079
Kriegsmann 0.105842 0.107858 0.127070 0.143147
Jones 0.355388 0.154439 0.130277 0.139428
Kallivokas 0.235829 0.143702 0.131366 0.140997
Antoine 0.516761 0.171546 0.137548 0.143342
Mathieu 0.058411 0.080925 0.096793 0.113574

(e) Aspect ratio = 1.1

k = 1 k = 2 k = 3 k = 4
Grote 0.080774 0.092004 0.097789 0.105320
Reiner 0.061371 0.088268 0.107000 0.117554
Kriegsmann 0.048948 0.075704 0.097439 0.111576
Jones 0.102350 0.075082 0.094203 0.109552
Kallivokas 0.081079 0.074890 0.094701 0.109835
Antoine 0.102452 0.076563 0.095170 0.110041
Mathieu 0.060985 0.080789 0.094721 0.105738

Table 5.1: OSRC Dirichlet boundary condition (θ = 0◦) L2 error
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We found that there is no standard method that is consistently superior over
the other standard methods. For example, in Figures 5.1 and 5.2 on page 50
( Table 5.0(a) on page 54) Reiner’s method yielded the best results among the
standard methods, while in Figures 5.3 and 5.4 on page 51 ( Table 5.0(b) on page
54) Kriegsmann’s OSRC is the best for k > 1. Another example is that the Grote
method is the worst in Figure 5.1 , but achieves in Figure 5.10 on page 53 the best
result for k = 4.

Furthermore, we find that the new method, based on Mathieu functions, is
significantly better than the other standard methods. This is expected for low and
intermediate frequencies, because this corresponds to the results that for lower wave
numbers around a circle, the modal expansion in Hankel functions is the best [22].
When the wave number is increasing, mainly for the middle aspect ratio, most
standard methods yield better results than for low frequencies. For example, see
Figures 5.5 and 5.6 on pages 52, 52 ( Table 5.0(c) on page 54) for Antoine method
results. The situation is different for our new method and Reiner’s method; when k

is increasing, these approximations consistently depart from the exact solution and
become similar to other methods.

We can also learn from these results that when the aspect ratio decreases, then
with most standard methods, better results are achieved. For example, see the
result of Grote’s method for AR = 10 Figures 5.1 and 5.2 on page 50 that becomes
increasingly better when the ellipse approaches a circle; see for example Figures
5.7 and 5.8 on page 52 or Figures 5.9 and 5.10 on page 53 .

For an incident angle θ = 5 similar results are observed. In Figures 5.11 and
5.12 on page 56 we consider k = 1, 2, 3, 4 and an aspect ratio of 10. In Figures 5.13
and 5.14 on page 56 we consider the same wave numbers but with an aspect ratio
of 3.3. In Figures 5.15 and 5.16 on page 57 the aspect ratio is 2, in Figures 5.17
and 5.18 on page 58 the aspect ratio 1.4 and in Figures 5.19 and 5.20 on page 58 ,
it is 1.1 . The L2 errors can be found in the legend and in Table 5.2 on page 59 .

Observing the Table 5.2 on page 59 one can find improvement in the results
from all methods with aspect ratios from 10 to 1.1. Note also that the improvement
for increasing wave numbers is similar to the case of an incident angle of 0; take
Kallivokas’s method in Figures 5.15 and 5.16 on page 57 for example. There is
still no consistent superior among the standard methods; note Kriegsmann versus
Reiner for the aspect ratio of 1.4 Figures 5.17 and 5.18 on page 58 and 3.3 with
k > 1 Figures 5.15 and 5.16 on page 57 . The method based on Mathieu functions
is once again superior.
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(a) k=1 (b) k=2

Figure 5.11: OSRC Dirichlet bc, k = 1, 2, AR=10 and θ = 5◦

(a) k=3 (b) k=4

Figure 5.12: OSRC Dirichlet bc, k = 3, 4, AR=10 and θ = 5◦

(a) k=1 (b) k=2

Figure 5.13: OSRC Dirichlet bc, k = 1, 2, AR=3.3 and θ = 5◦
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(a) k=3 (b) k=4

Figure 5.14: OSRC Dirichlet bc, k = 3, 4, AR=3.3 and θ = 5◦

(a) k=1 (b) k=2

Figure 5.15: OSRC Dirichlet bc, k = 1, 2, AR=2 and θ = 5◦

(a) k=3 (b) k=4

Figure 5.16: OSRC Dirichlet bc, k = 3, 4, AR=2 and θ = 5◦
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(a) k=1 (b) k=2

Figure 5.17: OSRC Dirichlet bc, k = 1, 2, AR=1.4 and θ = 5◦

(a) k=3 (b) k=4

Figure 5.18: OSRC Dirichlet bc, k = 3, 4, AR=1.4 and θ = 5◦

(a) k=1 (b) k=2

Figure 5.19: OSRC Dirichlet bc, k = 1, 2, AR=1.1 and θ = 5◦
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(a) Aspect ratio = 10

k = 1 k = 2 k = 3 k = 4
Grote 1.697209 1.681055 1.660974 1.641059
Reiner 0.476777 0.619929 0.682511 0.710153
Kriegsmann 0.871659 0.859494 0.829879 0.798958
Jones 1.663996 1.680240 1.692110 1.702447
Kallivokas 1.049335 1.133721 1.187891 1.231155
Antoine 1.682520 1.660554 1.649023 1.640290
Mathieu 0.072236 0.162932 0.267880 0.414783

(b) Aspect ratio = 3.3

k = 1 k = 2 k = 3 k = 4
Grote 1.624136 1.415842 1.214211 1.034188
Reiner 0.346009 0.436344 0.468350 0.471617
Kriegsmann 0.532979 0.409034 0.352717 0.328566
Jones 1.724585 1.741294 1.724998 1.677418
Kallivokas 1.235542 1.375849 1.427071 1.420351
Antoine 1.657765 1.615836 1.576444 1.524254
Mathieu 0.061279 0.113654 0.166036 0.227337

(c) Aspect ratio = 2

k = 1 k = 2 k = 3 k = 4
Grote 1.117424 0.688787 0.470269 0.345422
Reiner 0.228344 0.281582 0.297896 0.296812
Kriegsmann 0.243565 0.191926 0.189439 0.196409
Jones 1.416575 0.635285 0.319649 0.237599
Kallivokas 0.868273 0.449911 0.280453 0.232078
Antoine 1.447234 0.853531 0.389988 0.260473
Mathieu 0.057692 0.088890 0.113169 0.141481

(d) Aspect ratio = 1.4

k = 1 k = 2 k = 3 k = 4
Grote 0.323662 0.231437 0.171638 0.145046
Reiner 0.131779 0.164875 0.179795 0.183308
Kriegsmann 0.105746 0.107805 0.126390 0.141648
Jones 0.355084 0.154171 0.129682 0.138190
Kallivokas 0.235568 0.143613 0.130812 0.139777
Antoine 0.516343 0.171332 0.136929 0.142046
Mathieu 0.058300 0.080786 0.096728 0.112699

(e) Aspect ratio = 1.1

k = 1 k = 2 k = 3 k = 4
Grote 0.080760 0.091946 0.097762 0.105115
Reiner 0.061277 0.088289 0.107099 0.117618
Kriegsmann 0.048975 0.075613 0.097248 0.111198
Jones 0.102116 0.075063 0.094061 0.109211
Kallivokas 0.080946 0.074898 0.094559 0.109493
Antoine 0.102402 0.076546 0.095018 0.109694
Mathieu 0.060965 0.080737 0.094683 0.105527

Table 5.2: OSRC Dirichlet boundary condition (θ = 5◦) L2 error
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(a) k=3 (b) k=4

Figure 5.20: OSRC Dirichlet bc, k = 3, 4, AR=1.1 and θ = 5◦

5.1.2 Neumann Condition

We continue with the Neumann problem, once again starting from an incident angle
θ = 0. In Figures 5.21 and 5.22 on page 61 the same methods are compared with
the exact solution for wave numbers k = 0.5, 1, 2, 4 and an aspect ratio of 3.3. The
L2 error between the approximate solutions and the exact solution is again in the
legend and in the table Table 5.3 on page 64. In Figures 5.23 and 5.24 on page 61
we consider the same k’s but an aspect ratio 2, in Figures 5.25 and 5.26 on page
62 the aspect ratio is 1.4 and in Figures 5.27 and 5.28 on page 63 the aspect ratio
is 1.1.

One can see the improvement with decreasing aspect ratio; see Kallivokas’s
method, for example, from Figure 5.21 on page 61 to Figure 5.28 on page 63. But
now the results with the high aspect ratio are much worse, and this is the reason
why an aspect ratio of 10 is not presented here.

The situation with increasing wave numbers is not consistent in the case of the
Neumann condition. For example, the Jones and Grote methods become better for
increasing wave numbers in Figures 5.25 and 5.26 on page 62 , but both become
worse for increasing k with aspect ratio 1.1 [see Figures 5.27 and 5.28 on page 63 ].
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(a) k=0.5 (b) k=1

Figure 5.21: OSRC Neumann bc k = 0.5, 1, AR=3.3 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.22: OSRC Neumann bc k = 2, 4, AR=3.3 and θ = 0◦

(a) k=0.5 (b) k=1

Figure 5.23: OSRC Neumann bc k = 0.5, 1, AR=2 and θ = 0◦
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(a) k=2 (b) k=4

Figure 5.24: OSRC Neumann bc k = 2, 4, AR=2 and θ = 0◦

(a) k=0.5 (b) k=1

Figure 5.25: OSRC Neumann bc k = 0.5, 1, AR=1.4 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.26: OSRC Neumann bc k = 2, 4, AR=1.4 and θ = 0◦
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(a) k=0.5 (b) k=1

Figure 5.27: OSRC Neumann bc k = 0.5, 1, AR=1.1 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.28: OSRC Neumann bc k = 2, 4, AR=1.1 and θ = 0◦
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(a) Aspect ratio = 3.3

k = 0.5 k = 1 k = 2 k = 4
Grote 1.679674 1.668416 1.685739 1.431850
Reiner 0.256319 0.326444 0.571977 0.720348
Kriegsmann 0.446008 0.551897 0.611881 0.688292
Jones 1.463312 1.162046 1.297723 1.460995
Kallivokas 1.077718 1.082665 1.169074 1.296184
Antoine 1.649973 1.098637 1.354081 1.562304
Mathieu 0.035216 0.075034 0.142668 0.401460

(b) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 1.645635 1.241495 1.070095 0.741185
Reiner 0.204618 0.240101 0.443649 0.590184
Kriegsmann 0.238405 0.333474 0.388437 0.460539
Jones 1.211410 1.473217 0.436932 0.400990
Kallivokas 0.680037 0.702142 0.551608 0.427651
Antoine 1.717771 1.799634 0.525463 0.497256
Mathieu 0.034846 0.077248 0.126324 0.319496

(c) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.428385 0.382879 0.354214 0.336801
Reiner 0.150778 0.148930 0.297230 0.454710
Kriegsmann 0.132319 0.185319 0.215000 0.286164
Jones 0.544712 0.195435 0.168271 0.259969
Kallivokas 0.243344 0.243601 0.205610 0.271627
Antoine 0.690659 0.383769 0.262147 0.267628
Mathieu 0.034502 0.079598 0.130213 0.276079

(d) Aspect ratio = 1.1

k = 0.5 k = 1 k = 2 k = 4
Grote 0.058851 0.099297 0.152597 0.271251
Reiner 0.096324 0.065067 0.163079 0.320830
Kriegsmann 0.077963 0.077632 0.118763 0.242074
Jones 0.079667 0.068604 0.115839 0.238024
Kallivokas 0.065839 0.090013 0.117317 0.238205
Antoine 0.164443 0.133003 0.118730 0.236663
Mathieu 0.034263 0.082038 0.141973 0.264621

Table 5.3: OSRC Neumann boundary condition (θ = 0◦) L2 error
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(a) k=0.5 (b) k=1

Figure 5.29: OSRC Neumann bc k = 0.5, 1, AR=3.3 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.30: OSRC Neumann bc k = 2, 4, AR=3.3 and θ = 5◦

Again, when incident angle θ = 5 is considered, similar results are again ob-
served. In Figures 5.29 and 5.30 on page 65 we consider wave numbers k =
0.5, 1, 2, 4 with aspect ratio 3.3 and in Figures 5.31 and 5.32 on page 66 the same
wave numbers but with aspect ratio 1.4; in Figures 5.33 and 5.34 on page 66 the
aspect ratio is 1.4 and in Figures 5.35 and 5.36 on page 67 the same ks using an
aspect ratio of 1.1. The L2 errors is again in the legend and in Table 5.4 on page
68.

The results are worse again for high aspect ratios [see Figures 5.29 and 5.30 on
page 65 for aspect ratio 3.3] and improve when the aspect ratio is decreased [see
Figures 5.33 and 5.34 on page 66 ]. We note again the inconsistency of behavior
for changes in wave number [see Jones method in Figures 5.29 and 5.30 on page
65 (aspect ratio 3.3) and Figures 5.33 and 5.34 on page 66 (aspect ratio 1.4)]. The
new method is still superior there.
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(a) k=0.5 (b) k=1

Figure 5.31: OSRC Neumann bc k = 0.5, 1, AR=2 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.32: OSRC Neumann bc k = 2, 4, AR=2 and θ = 5◦

(a) k=0.5 (b) k=1

Figure 5.33: OSRC Neumann bc k = 0.5, 1, AR=1.4 and θ = 5◦
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(a) k=2 (b) k=4

Figure 5.34: OSRC Neumann bc k = 2, 4, AR=1.4 and θ = 5◦

(a) k=0.5 (b) k=1

Figure 5.35: OSRC Neumann bc k = 0.5, 1, AR=1.1 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.36: OSRC Neumann bc k = 2, 4, AR=1.1 and θ = 5◦
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(a) Aspect ratio = 3.3

k = 0.5 k = 1 k = 2 k = 4
Grote 1.689982 1.696687 1.689380 1.400735
Reiner 0.255631 0.321508 0.560313 0.711307
Kriegsmann 0.485934 0.553221 0.601497 0.687845
Jones 1.357314 1.091030 1.213791 1.436839
Kallivokas 1.121044 1.023555 1.126920 1.274206
Antoine 1.611918 1.144413 1.444736 1.545802
Mathieu 0.038397 0.079332 0.148502 0.400030

(b) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 1.647913 1.240791 1.067731 0.738991
Reiner 0.204326 0.238295 0.439958 0.585539
Kriegsmann 0.247582 0.333181 0.385482 0.460173
Jones 1.196725 1.458536 0.445982 0.403548
Kallivokas 0.682831 0.691423 0.544894 0.429358
Antoine 1.693432 1.734234 0.539865 0.500273
Mathieu 0.035194 0.077372 0.127163 0.317161

(c) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.428483 0.382369 0.353545 0.336355
Reiner 0.150650 0.148337 0.295833 0.452151
Kriegsmann 0.134345 0.184993 0.213831 0.284995
Jones 0.549332 0.195701 0.167390 0.259404
Kallivokas 0.243586 0.242249 0.204569 0.270691
Antoine 0.730155 0.383206 0.261114 0.267760
Mathieu 0.034484 0.079426 0.129645 0.273647

(d) Aspect ratio = 1.1

k = 0.5 k = 1 k = 2 k = 4
Grote 0.058797 0.099190 0.152444 0.270802
Reiner 0.096296 0.064997 0.162788 0.320225
Kriegsmann 0.078216 0.077460 0.118627 0.241878
Jones 0.081007 0.068375 0.115674 0.237922
Kallivokas 0.066503 0.089684 0.117187 0.238086
Antoine 0.172322 0.132598 0.118651 0.236614
Mathieu 0.034233 0.081944 0.141827 0.264203

Table 5.4: OSRC Neumann boundary condition (θ = 5◦) L2 error
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At the end of this subsection, we once again draw attention to the fact that
for the high aspect ratio and low frequencies the new method based on Mathieu
functions is clearly and significantly better than the standard methods for OSRC
with Neumann conditions. But it is worth noting that as the ellipse becomes more
circular for large wave numbers we can observe that some standard methods overtake
the new one [see Jones’s method in Figures 5.25 and 5.26 on page 62 ], which did
not happen with the Dirichlet condition.

5.2 Absorbing Boundary Condition

In this section we consider the same absorbing boundary conditions but exterior
to the ellipse. Both the scatterer and the outer artificial surface are concentric
ellipses. As before, the next two subsections present the results for both Dirichlet
and Neumann conditions on an elliptical scatterer.

5.2.1 Dirichlet condition

We begin with a Dirichlet boundary condition and incident angle θ = 0. We also
check the dependence of these ABCs on the place of the truncation of infinity, that is
on the distance between the artificial ellipse and the scatterer. The exterior ellipse is
defined by its major axis aext. As was explained in Section 1.1, to define the ellipse
we need a pair from the set a, b, f, e; we have the focal distance of the scatterer,
thus we use (aext, f).

In Figures 5.37 and 5.38 on page 70 we compare the methods described in
Chapter 2 with the exact solution for various values of the wave number (k =
0.5, 1, 2, 4), an aspect ratio of 10 and an artificial boundary defined by aext = 1.1.
The L2 error between the approximate solutions exterior to the ellipse and the exact
normal derivative is given in the legend. The errors for aext = 1.1 are also given in
Table 5.5 on page 72. In Figures 5.39 and 5.40 on page 71 we consider the same
ks and aext but using aspect ratio 2 and in Figures 5.41 and 5.42 on page 71 the
aspect ratio is 1.4.

In Figures 5.43 and 5.44 on page 73 we consider aext = 1.5 with the same wave
numbers and an aspect ratio of 10 while in Figures 5.45 and 5.46 on page 74 the
aspect ratio is 2 and Figures 5.47 and 5.48 on page 74 the aspect ratio is 1.4. The
error is given in Table 5.6 on page 75 and in the legend.

In Figures 5.49 and 5.50 on page 76 we consider aext = 2 with the same wave
numbers and an aspect ratio of 10, in Figures 5.51 and 5.52 on page 76 the aspect
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ratio is 2 and in Figures 5.53 and 5.54 on page 77 the aspect ratio is 1.4. The error
is given in the legend and in Table 5.7 on page 78 for aext = 2.

(a) k=0.5 (b) k=1

Figure 5.37: ABC Dirichlet bc, aext = 1.1 k = 0.5, 1, AR=10 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.38: ABC Dirichlet bc, aext = 1.1 k = 2, 4, AR=10 and θ = 0◦

One can see that when the artificial ellipse is far away from the scatterer the
approximations become closer to an exact solution, this also explains the poor results
that were observed for some methods with an OSRC. This is extremely noticeable
for Grote’s method, which was in most cases the worst for an OSRC but became
superior over standard methods when the artificial ellipse was defined by aext = 2
and the corresponding focal distance.

By moving the position of the artificial surface the best results, amongst those
presented here, are observed for aext = 2, but the general behavior is independent of
the artificial surface placement. Thus there is again improvement with a decreasing
aspect ratio [for example, see Kriegsmann’s method from Figure 5.37 on page 70 to
Figure 5.42 on page 72 or from Figure 5.49 on page 76 to Figure 5.54 on page 77].
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(a) k=0.5 (b) k=1

Figure 5.39: ABC Dirichlet bc, aext = 1.1 k = 0.5, 1, AR=2 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.40: ABC Dirichlet bc, aext = 1.1 k = 2, 4, AR=2 and θ = 0◦

(a) k=0.5 (b) k=1

Figure 5.41: ABC Dirichlet bc, aext = 1.1 k = 0.5, 1, AR=1.4 and θ = 0◦
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(a) k=2 (b) k=4

Figure 5.42: ABC Dirichlet bc, aext = 1.1 k = 2, 4, AR=1.4 and θ = 0◦

(a) Aspect ratio = 10

k = 0.5 k = 1 k = 2 k = 4
Grote 1.602766 1.043694 0.447977 0.064977
Reiner 0.262065 0.334186 0.343818 0.269657
Kriegsmann 0.248657 0.235803 0.231507 0.177675
Jones 0.718894 1.452600 1.196275 0.189632
Kallivokas 0.782580 0.784567 0.596403 0.226631
Antoine 0.783649 0.915603 1.038527 0.151423
Mathieu 0.008124 0.019773 0.043042 0.091856

(b) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 0.590158 0.426978 0.203929 0.070613
Reiner 0.129262 0.186399 0.219118 0.210384
Kriegsmann 0.308651 0.285626 0.232009 0.155462
Jones 1.480104 0.552963 0.147219 0.134352
Kallivokas 0.653657 0.446765 0.237245 0.149388
Antoine 1.124634 0.617750 0.292450 0.156024
Mathieu 0.013814 0.026838 0.042218 0.063860

(c) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.166482 0.153803 0.087938 0.059507
Reiner 0.081287 0.110260 0.130011 0.129553
Kriegsmann 0.218715 0.193799 0.141799 0.105311
Jones 0.773949 0.142019 0.093375 0.095542
Kallivokas 0.353962 0.208765 0.126528 0.099538
Antoine 0.777344 0.348181 0.146288 0.100812
Mathieu 0.017740 0.031149 0.042213 0.058215

Table 5.5: ABC Dirichlet boundary condition (θ = 0◦, aext = 1.1) L2 error
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Increasing the wave number is accompanied by consistent improvement of results
for all methods [see the Jones’s method in Figures 5.51 and 5.52 on page 76 , for
example].

(a) k=0.5 (b) k=1

Figure 5.43: ABC Dirichlet bc, aext = 1.5 k = 0.5, 1, AR=10 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.44: ABC Dirichlet bc, aext = 1.5 k = 2, 4, AR=10 and θ = 0◦

There is still no superior ABC between the standard methods. For aext = 1.1
Kriegsmann’s method is best for aspect ratio 10 and k < 4 and Antoine’s method is
the best for k = 4, while Reinter’s method is best for aspect ratio of 2 for k = 0.5, 1
and Jones’s method is the best for k = 2, 4. For aext = 1.5 Kriegsmann’s method is
best for aspect ratio 10 for k = 0.5 and Grote’s method is superior for the remaining
frequencies and for aspect ratio of 2. Similarly, with aext = 2 we could not find a
superior ABC among standard methods. We note that the new method is clearly
superior.

The same situation is observed when the incident angle is θ = 5. In Figures
5.55 and 5.56 on page 79 we compare the methods described in Chapter 2 with
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(a) k=0.5 (b) k=1

Figure 5.45: ABC Dirichlet bc, aext = 1.5 k = 0.5, 1, AR=2 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.46: ABC Dirichlet bc, aext = 1.5 k = 2, 4, AR=2 and θ = 0◦

(a) k=0.5 (b) k=1

Figure 5.47: ABC Dirichlet bc, aext = 1.5 k = 0.5, 1, AR=1.4 and θ = 0◦
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(a) k=2 (b) k=4

Figure 5.48: ABC Dirichlet bc, aext = 1.5 k = 2, 4, AR=1.4 and θ = 0◦

(a) Aspect ratio = 10

k = 0.5 k = 1 k = 2 k = 4
Grote 0.100053 0.043844 0.020544 0.021435
Reiner 0.133182 0.119718 0.090340 0.094351
Kriegsmann 0.032129 0.053489 0.026436 0.021602
Jones 0.072823 0.029143 0.022778 0.021592
Kallivokas 0.074340 0.047269 0.028468 0.029270
Antoine 0.226489 0.086870 0.029569 0.022156
Mathieu 0.010026 0.013903 0.015745 0.019792

(b) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 0.056461 0.031087 0.019310 0.011844
Reiner 0.099910 0.102782 0.072327 0.071681
Kriegsmann 0.057474 0.051236 0.030262 0.015713
Jones 0.098214 0.032914 0.025845 0.014818
Kallivokas 0.086018 0.053284 0.030272 0.019107
Antoine 0.205954 0.078589 0.032264 0.015236
Mathieu 0.004977 0.008774 0.011189 0.012291

(c) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.027066 0.018332 0.014720 0.018135
Reiner 0.068147 0.066305 0.052942 0.046688
Kriegsmann 0.048807 0.038054 0.023710 0.020133
Jones 0.068693 0.024365 0.020067 0.019675
Kallivokas 0.064142 0.038894 0.022909 0.021305
Antoine 0.141115 0.053073 0.023696 0.019786
Mathieu 0.004484 0.008595 0.010736 0.018561

Table 5.6: ABC Dirichlet boundary condition (θ = 0◦, aext = 1.5) L2 error
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(a) k=0.5 (b) k=1

Figure 5.49: ABC Dirichlet bc, aext = 2 k = 0.5, 1, AR=10 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.50: ABC Dirichlet bc, aext = 2 k = 2, 4, AR=10 and θ = 0◦

(a) k=0.5 (b) k=1

Figure 5.51: ABC Dirichlet bc, aext = 2 k = 0.5, 1, AR=2 and θ = 0◦
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(a) k=2 (b) k=4

Figure 5.52: ABC Dirichlet bc, aext = 2 k = 2, 4, AR=2 and θ = 0◦

(a) k=0.5 (b) k=1

Figure 5.53: ABC Dirichlet bc, aext = 2 k = 0.5, 1, AR=1.4 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.54: ABC Dirichlet bc, aext = 2 k = 2, 4, AR=1.4 and θ = 0◦
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(a) Aspect ratio = 10

k = 0.5 k = 1 k = 2 k = 4
Grote 0.017129 0.010286 0.016665 0.018075
Reiner 0.063215 0.044946 0.053409 0.051183
Kriegsmann 0.015164 0.015287 0.016357 0.018781
Jones 0.010572 0.011783 0.016630 0.018630
Kallivokas 0.017361 0.013430 0.021387 0.029976
Antoine 0.039489 0.013643 0.016906 0.018623
Mathieu 0.010364 0.012989 0.015555 0.019310

(b) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 0.010033 0.008638 0.008384 0.011346
Reiner 0.058712 0.038411 0.042752 0.039938
Kriegsmann 0.017865 0.015557 0.008909 0.012658
Jones 0.015614 0.012410 0.008688 0.012522
Kallivokas 0.021989 0.015038 0.014135 0.019234
Antoine 0.037717 0.017493 0.008964 0.012550
Mathieu 0.005424 0.007424 0.007833 0.011692

(c) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.008526 0.007716 0.006636 0.017835
Reiner 0.043380 0.028029 0.027225 0.030087
Kriegsmann 0.017061 0.013085 0.007070 0.018483
Jones 0.015039 0.010692 0.006719 0.018424
Kallivokas 0.019473 0.012573 0.011638 0.022598
Antoine 0.029496 0.014510 0.006879 0.018436
Mathieu 0.004414 0.006453 0.006298 0.017988

Table 5.7: ABC Dirichlet boundary condition (θ = 0◦, aext = 2) L2 error
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the exact solution for various values of wave number (k = 0.5, 1, 2, 4), aspect ratio
of 10 and an artificial boundary defined by aext = 1.1. The L2 error between the
approximate solutions exterior to the ellipse and the exact normal derivative is given
in the legend. The errors for aext = 1.1 are also given in Table 5.8 on page 81. In
Figures 5.57 and 5.58 on page 80 we consider the same ks and aext but aspect ratio
2 and in Figures 5.59 and 5.60 on page 80 the aspect ratio is 1.4.

In Figures 5.61 and 5.62 on page 82 we consider aext = 1.5 with the same wave
numbers and an aspect ratio of 10. In Figures 5.63 and 5.64 on page 82 the aspect
ratio is 2 and Figures 5.65 and 5.66 on page 83 the aspect ratio is 1.4. The error
is given in Table 5.9 on page 84 and in the legend. In Figures 5.67 and 5.68 on
page 85 we consider aext = 2 with the same wave numbers and an aspect ratio of
10, in Figures 5.69 and 5.70 on page 86 the aspect ratio is 2 and in Figures 5.71
and 5.72 on page 86 the aspect ratio is 1.4. The error is given in the legend and in
Table 5.10 on page 87 for aext = 2.

(a) k=0.5 (b) k=1

Figure 5.55: ABC Dirichlet bc aext = 1.1 k = 0.5, 1, AR=10 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.56: ABC Dirichlet bc aext = 1.1 k = 2, 4, AR=10 and θ = 5◦
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(a) k=0.5 (b) k=1

Figure 5.57: ABC Dirichlet bc aext = 1.1 k = 0.5, 1, AR=2 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.58: ABC Dirichlet bc aext = 1.1 k = 2, 4, AR=2 and θ = 5◦

(a) k=0.5 (b) k=1

Figure 5.59: ABC Dirichlet bc aext = 1.1 k = 0.5, 1, AR=1.4 and θ = 5◦
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(a) k=2 (b) k=4

Figure 5.60: ABC Dirichlet bc aext = 1.1 k = 2, 4, AR=1.4 and θ = 5◦

(a) Aspect ratio = 10

k = 0.5 k = 1 k = 2 k = 4
Grote 1.602877 1.043340 0.447045 0.063903
Reiner 0.261898 0.334365 0.344443 0.271083
Kriegsmann 0.248556 0.235589 0.231533 0.177722
Jones 0.718851 1.453364 1.198436 0.190317
Kallivokas 0.782845 0.785195 0.597266 0.227087
Antoine 0.783672 0.915696 1.038844 0.151852
Mathieu 0.008231 0.019729 0.042913 0.091365

(b) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 0.589947 0.426506 0.203620 0.071433
Reiner 0.129191 0.186450 0.219266 0.211594
Kriegsmann 0.308654 0.285315 0.231441 0.154407
Jones 1.480492 0.553271 0.147374 0.133770
Kallivokas 0.653856 0.446802 0.237106 0.148673
Antoine 1.124643 0.617530 0.292152 0.155260
Mathieu 0.014188 0.027223 0.042383 0.064001

(c) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.166419 0.153676 0.088079 0.059679
Reiner 0.081294 0.110357 0.130287 0.130362
Kriegsmann 0.218688 0.193552 0.141721 0.104482
Jones 0.774228 0.142406 0.093819 0.094960
Kallivokas 0.354127 0.208866 0.126743 0.098911
Antoine 0.777298 0.348062 0.146437 0.100175
Mathieu 0.018136 0.031497 0.042737 0.058067

Table 5.8: ABC Dirichlet boundary condition (θ = 5◦, aext = 1.1) L2 error
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(a) k=0.5 (b) k=1

Figure 5.61: ABC Dirichlet bc aext = 1.5 k = 0.5, 1, AR=10 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.62: ABC Dirichlet bc aext = 1.5 k = 2, 4, AR=10 and θ = 5◦

(a) k=0.5 (b) k=1

Figure 5.63: ABC Dirichlet bc aext = 1.5 k = 0.5, 1, AR=2 and θ = 5◦



5.2. ABSORBING BOUNDARY CONDITION 83

(a) k=2 (b) k=4

Figure 5.64: ABC Dirichlet bc aext = 1.5 k = 2, 4, AR=2 and θ = 5◦

(a) k=0.5 (b) k=1

Figure 5.65: ABC Dirichlet bc aext = 1.5 k = 0.5, 1, AR=1.4 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.66: ABC Dirichlet bc aext = 1.5 k = 2, 4, AR=1.4 and θ = 5◦
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(a) Aspect ratio = 10

k = 0.5 k = 1 k = 2 k = 4
Grote 0.100058 0.043879 0.020912 0.022201
Reiner 0.133300 0.120011 0.090693 0.095087
Kriegsmann 0.032148 0.053578 0.026692 0.022565
Jones 0.072857 0.029223 0.023088 0.022561
Kallivokas 0.074384 0.047348 0.028733 0.030177
Antoine 0.226672 0.086925 0.029830 0.023123
Mathieu 0.010114 0.014064 0.016138 0.020463

(b) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 0.056516 0.031556 0.020945 0.017958
Reiner 0.099980 0.103080 0.072798 0.072851
Kriegsmann 0.057604 0.051480 0.031351 0.021637
Jones 0.098311 0.033366 0.027135 0.020957
Kallivokas 0.086151 0.053575 0.031394 0.024401
Antoine 0.206072 0.078788 0.033315 0.021276
Mathieu 0.006088 0.010317 0.013743 0.018666

(c) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.027281 0.019037 0.017226 0.020951
Reiner 0.068262 0.066593 0.053746 0.047554
Kriegsmann 0.048947 0.038344 0.025427 0.023240
Jones 0.068840 0.024915 0.022098 0.022806
Kallivokas 0.064290 0.039234 0.024723 0.024412
Antoine 0.141188 0.053321 0.025446 0.022913
Mathieu 0.005862 0.010014 0.014009 0.021605

Table 5.9: ABC Dirichlet boundary condition (θ = 5◦, aext = 1.5) L2 error



5.2. ABSORBING BOUNDARY CONDITION 85

When the outer ellipse moves away from the scatterer the approximations be-
come closer to the exact solution and this is still extremely noticeable on Grote’s
method. This means that the best choice is to be far enough from the scatterer; here
aext = 2. The general behavior properties are still preserved. For an example of
improvement with decreasing aspect ratio see Kallivokas’s method from Figure 5.55
on page 79 to Figure 5.60 on page 81 or from Figure 5.61 on page 82 to Figure 5.66
on page 83. The effect of increasing wave numbers is again seen in the improvement
of the results for all methods [see for example Antoine’s method in Figures 5.63
and 5.64 on page 82 or Jones’s method in Figures 5.69 and 5.70 on page 86 ].

(a) k=0.5 (b) k=1

Figure 5.67: ABC Dirichlet bc aext = 2 k = 0.5, 1, AR=10 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.68: ABC Dirichlet bc aext = 2 k = 2, 4, AR=10 and θ = 5◦

Among the standard methods there is still no consistently superior ABC. With
aext = 1.1 and aspect ratio 10 Antoine’s method again is the best for k = 4 and
Kriegsmann’s method for the remaining frequencies. For aspect ratio 1.4 Reinter’s
method is the best for k = 0.5, 1 and Grote’s method is the best for k = 2, 4.
Similarly, with the remaining aext the method with the best results of the standard
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(a) k=0.5 (b) k=1

Figure 5.69: ABC Dirichlet bc aext = 2 k = 0.5, 1, AR=2 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.70: ABC Dirichlet bc aext = 2 k = 2, 4, AR=2 and θ = 5◦

(a) k=0.5 (b) k=1

Figure 5.71: ABC Dirichlet bc aext = 2 k = 0.5, 1, AR=1.4 and θ = 5◦
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(a) k=2 (b) k=4

Figure 5.72: ABC Dirichlet bc aext = 2 k = 2, 4, AR=1.4 and θ = 5◦

(a) Aspect ratio = 10

k = 0.5 k = 1 k = 2 k = 4
Grote 0.017157 0.010534 0.017040 0.018927
Reiner 0.063331 0.045016 0.053670 0.052106
Kriegsmann 0.015217 0.015442 0.016762 0.019542
Jones 0.010656 0.011980 0.017032 0.019402
Kallivokas 0.017406 0.013594 0.021741 0.030363
Antoine 0.039510 0.013809 0.017305 0.019395
Mathieu 0.010453 0.013170 0.015954 0.020082

(b) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 0.010571 0.010274 0.011625 0.017940
Reiner 0.058865 0.038828 0.043527 0.043222
Kriegsmann 0.018176 0.016484 0.012068 0.018543
Jones 0.015994 0.013567 0.011897 0.018468
Kallivokas 0.022251 0.016012 0.016271 0.023286
Antoine 0.037862 0.018332 0.012099 0.018485
Mathieu 0.006407 0.009221 0.011286 0.017990

(c) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.009290 0.009317 0.011289 0.020702
Reiner 0.043582 0.028529 0.028658 0.032640
Kriegsmann 0.017431 0.014062 0.011598 0.021115
Jones 0.015524 0.011882 0.011374 0.021074
Kallivokas 0.019816 0.013608 0.014802 0.024579
Antoine 0.029707 0.015408 0.011471 0.021084
Mathieu 0.005754 0.008272 0.011128 0.020731

Table 5.10: ABC Dirichlet boundary condition (θ = 5◦, aext = 2) L2 error
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methods varies, but the new method is consistently superior.

5.2.2 Neumann Condition

We finish this chapter with the ABC for the Neumann boundary condition. We
compare aext = 2 only, and begin with θ = 0. In Figures 5.73 and 5.74 on page
88 we compare the same methods for wave numbers (k = 0.5, 1, 2, 4) and an aspect
ratio of 10. The L2 error between the approximate solutions exterior to the ellipse
and the exact normal derivative is given again in the legend and in Table 5.11 on
page 91. In Figures 5.75 and 5.76 on page 89 we consider the same ks but aspect
ratio 3.3, in Figures 5.79 and 5.80 on page 90 the aspect ratio is 1.4 and in Figures
5.77 and 5.78 on page 90 the aspect ratio is 1.4.

We note again the improvement for results of most methods is with decreasing
aspect ratio; for example, see Reiner’s method from Figure 5.73 on page 88 to
Figure 5.80 on page 92. For further examples, see the corresponding figures for the
methods of Kriegsmann and Kallivokas.

(a) k=0.5 (b) k=1

Figure 5.73: ABC Neumann bc, aext = 2 k = 0.5, 1, AR=10 and θ = 0◦

The situation with increasing wave numbers is not consistent as in the case of
the OSRC Neumann. For example, Reiner’s and Grote’s methods for aspect ratio
10 improved from k = 0.5 to k = 1 but worsened for k = 2 and improved again
for k = 4. The behavior of Kriegsmann’s method for aspect ratio 10 is similar to
that of Reiner and Grote’s. However, for aspect ratio 3.3 Kriegsmann’s method
consistently improves with increasing wave numbers, while Grote’s and Reiner’s
methods are still not consistent.

Similarly with incident angle θ = 5. In Figures 5.81 and 5.82 on page 92 we
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(a) k=2 (b) k=4

Figure 5.74: ABC Neumann bc, aext = 2 k = 2, 4, AR=10 and θ = 0◦

(a) k=0.5 (b) k=1

Figure 5.75: ABC Neumann bc, aext = 2 k = 0.5, 1, AR=3.3 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.76: ABC Neumann bc, aext = 2 k = 2, 4, AR=3.3 and θ = 0◦
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(a) k=0.5 (b) k=1

Figure 5.77: ABC Neumann bc, aext = 2 k = 0.5, 1, AR=2 and θ = 0◦

(a) k=2 (b) k=4

Figure 5.78: ABC Neumann bc, aext = 2 k = 2, 4, AR=2 and θ = 0◦

(a) k=0.5 (b) k=1

Figure 5.79: ABC Neumann bc, aext = 2 k = 0.5, 1, AR=1.4 and θ = 0◦
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(a) Aspect ratio = 10

k = 0.5 k = 1 k = 2 k = 4
Grote 0.012261 0.005503 0.008094 0.005757
Reiner 0.054823 0.042937 0.064253 0.059762
Kriegsmann 0.014640 0.006704 0.008159 0.004793
Jones 0.010021 0.005184 0.008717 0.004815
Kallivokas 0.015558 0.004823 0.012066 0.021337
Antoine 0.017597 0.006978 0.008879 0.004835
Mathieu 0.006515 0.002456 0.007189 0.004675

(b) Aspect ratio = 3.3

k = 0.5 k = 1 k = 2 k = 4
Grote 0.014510 0.004178 0.006508 0.004886
Reiner 0.048622 0.042516 0.061596 0.050869
Kriegsmann 0.013708 0.007636 0.006342 0.005359
Jones 0.010178 0.006135 0.006885 0.005390
Kallivokas 0.014990 0.006212 0.009109 0.017550
Antoine 0.021444 0.008505 0.007045 0.005421
Mathieu 0.006075 0.002558 0.005799 0.005025

(c) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 0.014750 0.004025 0.005342 0.005701
Reiner 0.039900 0.036546 0.047992 0.037262
Kriegsmann 0.012660 0.007880 0.005379 0.007182
Jones 0.010286 0.006684 0.005592 0.007243
Kallivokas 0.013838 0.006988 0.007791 0.014752
Antoine 0.022355 0.009055 0.005797 0.007276
Mathieu 0.005751 0.002898 0.004859 0.006598

(d) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.012562 0.004223 0.004286 0.006747
Reiner 0.028901 0.025225 0.029459 0.023296
Kriegsmann 0.011245 0.007190 0.004646 0.008210
Jones 0.010010 0.006519 0.004638 0.008295
Kallivokas 0.011892 0.006745 0.007754 0.013740
Antoine 0.018772 0.008277 0.004800 0.008318
Mathieu 0.005535 0.003582 0.004432 0.007766

Table 5.11: ABC Neumann boundary condition (θ = 0◦) L2 error
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(a) k=2 (b) k=4

Figure 5.80: ABC Neumann bc, aext = 2 k = 2, 4, AR=1.4 and θ = 0◦

consider the same wave numbers and an aspect ratio of 10 , in Figures 5.83 and
5.84 on page 93 the aspect ratio is 3.3, in Figures 5.85 and 5.86 on page 94 the
aspect ratio is 3.3and Figures 5.51 and 5.52 on page 76 the aspect ratio is 1.4. The
error is given in Table 5.12 on page 95 and in the legend.

(a) k=0.5 (b) k=1

Figure 5.81: ABC Neumann bc, aext = 2 k = 0.5, 1, AR=10 and θ = 5◦

We found again an improvement in most methods when the aspect ratio de-
creases [for example see Antoine’s method from Figure 5.81 on page 92 to Figure
5.88 on page 96]. When the wave number is increasing there is still inconsistency
as before. See Kriegsmann’s and Reiner’s methods for aspect ratio 2 that improved
from k = 0.5 to k = 1 but worsened for k = 2 and improved again for k = 4.
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(a) k=2 (b) k=4

Figure 5.82: ABC Neumann bc, aext = 2 k = 2, 4, AR=10 and θ = 5◦

(a) k=0.5 (b) k=1

Figure 5.83: ABC Neumann bc, aext = 2 k = 0.5, 1, AR=3.3 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.84: ABC Neumann bc, aext = 2 k = 2, 4, AR=3.3 and θ = 5◦
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(a) k=0.5 (b) k=1

Figure 5.85: ABC Neumann bc, aext = 2 k = 0.5, 1, AR=2 and θ = 5◦

(a) k=2 (b) k=4

Figure 5.86: ABC Neumann bc, aext = 2 k = 2, 4, AR=2 and θ = 5◦

(a) k=0.5 (b) k=1

Figure 5.87: ABC Neumann bc, aext = 2 k = 0.5, 1, AR=1.4 and θ = 5◦
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(a) Aspect ratio = 10

k = 0.5 k = 1 k = 2 k = 4
Grote 0.048122 0.098103 0.171671 0.044406
Reiner 0.065539 0.125670 0.186071 0.081008
Kriegsmann 0.049985 0.093336 0.171538 0.043211
Jones 0.046710 0.093189 0.171562 0.043245
Kallivokas 0.049373 0.092635 0.171381 0.048941
Antoine 0.051256 0.091524 0.171537 0.043244
Mathieu 0.048117 0.096231 0.171943 0.043177

(b) Aspect ratio = 3.3

k = 0.5 k = 1 k = 2 k = 4
Grote 0.019473 0.027338 0.058138 0.030063
Reiner 0.049166 0.056338 0.085153 0.064326
Kriegsmann 0.019296 0.025792 0.058047 0.029467
Jones 0.015676 0.025545 0.058101 0.029514
Kallivokas 0.019699 0.025291 0.058278 0.034010
Antoine 0.025408 0.025318 0.058104 0.029515
Mathieu 0.014759 0.026427 0.058192 0.029539

(c) Aspect ratio = 2

k = 0.5 k = 1 k = 2 k = 4
Grote 0.015355 0.009900 0.019175 0.023784
Reiner 0.039794 0.039174 0.051662 0.046078
Kriegsmann 0.013452 0.011196 0.019163 0.023908
Jones 0.010923 0.010470 0.019212 0.023943
Kallivokas 0.014430 0.010595 0.019910 0.027096
Antoine 0.022808 0.011909 0.019263 0.023952
Mathieu 0.007359 0.009134 0.019146 0.023754

(d) Aspect ratio = 1.4

k = 0.5 k = 1 k = 2 k = 4
Grote 0.012599 0.005021 0.005722 0.013625
Reiner 0.028825 0.025748 0.029820 0.026581
Kriegsmann 0.011303 0.007547 0.006006 0.014324
Jones 0.010061 0.006929 0.005984 0.014378
Kallivokas 0.011929 0.007146 0.008633 0.018208
Antoine 0.018794 0.008605 0.006109 0.014392
Mathieu 0.005736 0.004351 0.005897 0.014004

Table 5.12: ABC Neumann boundary condition (θ = 5◦) L2 error
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(a) k=2 (b) k=4

Figure 5.88: ABC Neumann bc, aext = 2 k = 2, 4, AR=1.4 and θ = 5◦



Chapter 6

Conclusion

The Helmholtz equation describes wave propagation in the frequency domain. This
is important both in acoustics and electromagnetics. In particular we are interested
in acoustic scattering about a soft or hard body. Since the domain is unbounded
a Sommerfeld radiation condition is required to make it well-posed. For a numer-
ical approximation we need to replace the unbounded domain by a finite domain
bounded by an artificial surface. One then needs to impose a boundary condition
on the artificial surface to make it both well-posed and accurate. One of the orig-
inal approaches was that by Bayliss and Turkel based on matching an expansion
of the solution. Their method is most appropriate for cylindrical and spherical co-
ordinates. However, to eliminate the need for extra mesh points it would be more
efficient, in many cases, to consider other shapes for the outer artificial surface. A
number of generalizations have been suggested during recent years.

In this thesis we have two objectives. First to compare the accuracy of existing
methods. For this purpose we investigated scattering exterior to an ellipse with an
elliptically shaped artificial surface. This has the advantage that there is an explicit
solution in terms of an infinite series in Mathieu functions. Thus we can compare the
numerical solution with an analytical solution to compare errors between the meth-
ods. The second objective of the thesis was to construct a new absorbing boundary
condition for elliptical surfaces based on an expansion in Mathieu functions. We
also compare this new boundary conditions with the existing ones.

The original absorbing boundary conditions assumed that the Helmholtz equa-
tion was being solved by either a finite difference or a finite element method. Thus,
the artificial surface where the absorbing boundary was imposed was some distance
from the scatterer. Later, Kriegsmann et al. introduced the concept of imposing
the absorbing boundary condition direction of the scatterer (OSRC = On-Surface
Radiation Condition). In our comparisons we considered both OSRC methods and
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finite difference schemes.

We surveyed several methods using local absorbing boundary conditions for
the Helmholtz equation. We compared these methods to our new method. The
comparison of these methods shows the following:

• Most of the standard methods work better for low aspect ratio a
b where a, b

are major and minor semi-axes of the scatterer ellipse.

• For Dirichlet (hard) boundary condition on the scatterer most of the standard
methods work better for high frequencies.

• For Neumann (soft) boundary condition on the scatterer none of the methods
have consistent behavior for changes in wave number.

• Among the expansion type boundary conditions none is consistently much
better than the simple Kriegsmann boundary condition.

• The new modal elliptical boundary condition is not significantly inferior to
the optimal one and is frequently much superior, especially for lower wave
numbers and when the outer boundary is close in when used as an OSRC.
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Appendix A
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תקציר

של הנומריים הפתרונות עבור בולעים שפה תנאי מספר משווים אנו זו בעבודה

חדש, שפה תנאי מציגים אנו כן, כמו לאליפסה. חיצוני בתחום Helmholtz משוואת

משווים אנו .Mathieu בפונקציית (modal expansion) מודאלי פיתוח על המבוסס

אליפטיות. בקואורדינטות אחרות שיטות עם החדשה השיטה את

על וזאת באינסוף, שפה תנאי הצבת מחייבות חיצוני בתחום אליפטיות משוואות

.Helmholtz משוואת הוא המעשיים היישומים אחד מוצגות־היטב. להבטיח מנת

האינסופי(. התחום )קיטוע חסום בתחום פתרון מחייבים המוגבלים המחשב משאבי

תנאי מוחלים עליו מלאכותי, חיצוני תחום בעזרת כלל, בדרך מתבצע, האינסוף קיטוע

,[3] וטורקל בייליס הפיזיקלי. התחום לתוך החזרים לספוג המיועדים בולעים, שפה

קואורדינטות עבור כנ״ל שפה תנאי של סדרה הציגו ,[2] גנסבורגר עם מאוחר ויותר

משטחים עבור מחברים מספר ידי על הוכללו אלה שפה תנאי וכדוריות. פולריות

כדור. או מעגל שאינם מלאכותיים

לנקודות שכנות נקודות רק )הקושרים מקומיים שפה תנאי משווים אנו זו בעבודה

המדויק הפתרון עבורה אליפטי, מגוף גלים פיזור בבעית עוסקים אנו כך, לשם השפה(.

עוסקים אנו התדר. במישור הדו־ממדית Helmholtz במשוואת מתמקדים אנו ידוע.

החיצונית. בבעיה והן On Surface Radiation Conditions (OSRC) בבעיית הן

הסופיים. ההפרשים בשיטת מושגים הפתרונות





ז׳אנה לאישתי

על טורקל, אלי פרופסור העבודה, למנחה להודות ברצוני

ליעקוב מודה אני כן, כמו ועצותיו. המסורה הנחייתו

היותו ועל המדויק, לפתרון Matlab שגרת על אולשנסקי

.Mathieu פונקציות עבור שלי הידע מקור

בלעדיהם והאהבה. התמיכה על למשפחתי מודה אני כמובן,

כמשמעו) (פשוטו להתקיים יכלה לא לעולם זו עבודה
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