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Abstract

We study the propagation of waves over large regions of space with smooth, but

not necessarily constant, material characteristics, separated into sub-domains by

interfaces of arbitrary shape. We consider a divide and conquer approach based on

wave splitting into incoming and outgoing waves. We assemble the overall solution

from the set of individual solutions to an auxiliary problem (AP). The AP is defined

independently for each sub-domain. The choice of the AP is relatively flexible; it

can be formulated to enable an easy and economical numerical solution. Our new

method uses only simple structured grids, e.g., Cartesian or polar, regardless of the

shape of the boundaries or interfaces. In the regions of smoothness, it employs high

order accurate finite difference schemes on compact stencils. They do not require any

additional boundary conditions besides those needed for the underlying differential

equation itself. Interfaces not aligned with the grid handled by Calderon’s operators

and a method of difference potentials [52].

The operator of Calderon and the method of difference potentials have a number

of important advantages; it easily handles curvilinear boundaries, variable coeffi-

cients and general boundary conditions while the complexity is that of a finite-

difference scheme on a regular structured grid. A main advantage is that this

methodology provides high order accuracy and overcomes the difficulties inherent

in more traditional approaches.
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Chapter 1

Introduction

We consider problems that involve the propagation of acoustic or electromagnetic

waves over large regions of space with smooth, but not necessarily constant, material

characteristics, separated by interfaces of arbitrary shape. The external boundaries

can also be arbitrarily shaped. These problems play a central role in imaging (med-

ical and other types), nondestructive evaluation, land mine detection, active control

of sound, etc. We describe the system governed by the Maxwell equations coupled

with appropriate initial and boundary conditions. The acoustic case results in a

similar situation. The Maxwell equations are given by:

∂
−→
B

∂t
+∇×

−→
E = 0 (Faraday′s Law),

∂
−→
D

∂t
−∇×

−→
H = −

−→
J (Ampere′s Law),

23



24 CHAPTER 1. INTRODUCTION

coupled with Gauss’s law ∇ ·
−→
B = 0, ∇ ·

−→
D = ρ, where

−→
J = σ

−→
E is electric current

density, σ is electrical conductivity, and ρ is electric charge density. For linear

materials we relate the magnetic flux density vector
−→
B to the magnetic field vector

−→
H and the electric flux density vector

−→
D to the electric field vector

−→
E using

−→
B =

µ
−→
H,
−→
D = ε

−→
E , where ε is the dielectric permittivity that describes the particular

media and µ is the magnetic permeability. We consider discontinuities in the media,

i.e. in ε.

In two dimensions the set of 6 equations decouples into two independent sets of

3 equations denoted as TMz and TEz (transverse magnetic and electric fields).

Consider the two dimensional TMz mode Maxwell equations in a lossless mate-

rial, i.e. σ = 0: 

∂Hx
∂t = − 1

µ
∂Ez
∂y ,

∂Hy

∂t = 1
µ
∂Ez
∂x ,

∂Ez
∂t = 1

ε

(
∂Hy

∂x −
∂Hx
∂y

)
.

Differentiating the first equation in y, the second in x and the last in t, assuming

ε, µ are time independent, one gets



∂2Hx
∂t∂y = − ∂

∂y

(
1
µ
∂Ez
∂y

)
,

∂2Hy

∂t∂x = ∂
∂x

(
1
µ
∂Ez
∂x

)
,

∂2Ez
∂t2

= 1
ε

(
∂2Hy

∂x∂t −
∂2Hx
∂y∂t

)
.

Substituting the first two equations into the third one, we get the wave equation
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for Ez:

∂2Ez
∂t2

=
1

ε

(
∂

∂x

(
1

µ

∂Ez
∂x

)
+

∂

∂y

(
1

µ

∂Ez
∂y

))
.

Since for most materials µ is constant while ε is not, we rewrite the last equation as

∂2Ez
∂t2

= c2(x, y)

(
∂2Ez
∂x2

+
∂2Ez
∂y2

)
,

where c2(x, y) = 1
ε(x,y)µ0

. When we apply the Fourier transform in time the wave

equation becomes the Helmholtz equation ∆u + k2u = 0 where k2 = ω2

c2
is the

wavenumber, k = k(x, y).

In physical applications, the quantity c(x, y) may be discontinuous and therefore

the wavenumber may be only a piecewise continuous function. The propagation of

waves across media with material discontinuities is encountered in a wide variety of

settings. For example, classical problems of electromagnetic scattering/transmission

often involve sharp variations of material properties. These problems appear in

applications that range from radar imaging to telecommunication devices.

Our discussion here concerns the numerical solution of the Helmholtz equation

for domains where the boundaries and interfaces do not necessarily conform to

the discretization mesh. The material properties are assumed smooth between the

interfaces, whereas at the interfaces they may undergo jumps. In Section 1.1 we

describe the general problem and introduce the Helmholtz equation in different

coordinate systems. In Section 1.2 we review existing numerical methods while

in Chapter 2 we explain our approach in solving problems with discontinuities.

In Chapter 3 we present details of our implementation with representative results

followed by our conclusions in Chapter 4.
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1.1 Helmholtz equation

The Helmholtz equation, named for Hermann von Helmholtz, is the elliptic partial

differential equation

∆u+ k2u = F, (1.1)

where ∆ = ∇2 is the Laplacian, u = u(x ) is the scalar unknown field, e.g., acoustic

pressure or linearly polarized electric field (x ∈ Rn), and F = F (x ) is the source

term, which, if present, will always be compactly supported in Rn. The quantity

k = k(x ) in (1.1) is the wavenumber, k2 = k2
0ν

2 and k2
0 =

ω2
0

c20
, where ω0 is the fixed

carrier frequency. c is the propagation speed in the unobstructed medium (also fixed,

as the speed of sound in ambient fluid at a constant temperature or the speed of

light in vacuum), and ν = ν(x ) is the refraction index. The physical interpretation

of ν(x ) is the ratio of the reference speed c to the actual propagation speed at a

given x . The function ν(x ), and hence k(x ), can be only piecewise continuous.

The Helmholtz equation is used to model a variety of important physical processes

and phenomena in acoustics and electromagnetism. In this thesis we consider two

dimensional problems with material discontinuities and boundaries that are not

aligned to the numerical grid.

Consider an incident wave, u(inc), impinging on an arbitrary body Ω1, see Figure

1.1. It generates a transmitted wave, u(trans), and partially gets reflected, u(scat).

It could be an ultrasound wave scanning a kidney, an embryo, a carrier wave of a

cellular phone, a Wi-Fi radio signal passing through a wall or the head of a human.

In the frequency domain, such a scenario is described using the Helmholtz operator
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Г 

k0 

k1 

Ω1 

Ω0=Rn\Ω1 

Unbounded Domain 

Figure 1.1: Schematic Problem

Lq = ∆ + k2
q in the domain Ωq where q ∈ 0, 1 as follows

{
L0u = 0 x ∈ Ω0, (1.2a)

L1u = F (x ) x ∈ Ω1, (1.2b)

F (x ) is the source term, u(x ) = u(inc)(x ) + u(scat)(x ) for each x ∈ Ω0. u(inc) =

e−ik(x cos θ+y sin θ) is a given plane wave impinging from an incident angle θ. Thus,

problem (1.2) is driven by incident wave u(inc) and the source term F (x ). Across

the interface Γ between the two subdomains, Ω1 and Ω0, one typically requires that

the function and it’s first normal derivative be continuous. Such problems may have

multiple solutions. To ensure uniqueness one additionally requires that the scattered

field u(scat) has no incoming components. This is guaranteed by the (n-dimentional)
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Sommerfeld radiation condition:

∂u(scat)(x )

∂|x |
+ ik0u

(scat)(x ) = o
(
|x |

1−n
2

)
, as |x | → ∞. (1.3)

Problem (1.2) can be generalized for several bodies {Ωq}nq=1 ⊂ Ω0 which are

either mutually disjoint or share an interface. The problem is then defined as fol-

lowing: 

L0u = 0 x ∈ Ω0,

L1u = F1(x ) x ∈ Ω1,

...

Lnu = Fn(x ) x ∈ Ωn,

(1.4)

driven by u(inc) and a set Fi, i = 1, 2, . . . , n. Across every interface one may require

that the function and it’s first normal derivative are continuous. One can also define

other interface conditions, those still can be handled by the method described below,

see equation (2.18). At infinity the Sommerfeld condition is required for uniqueness.

On the other hand, when one solves only an exterior (Ω0) or an interior (Ω1)

problem then only one boundary condition should be provided. For an exterior

problem, in addition to the Sommerfeld condition, one often requires that u(scat) =

−u(inc) or u
(scat)
n = −u(inc)

n on Γ which is the Dirichlet u|Γ = 0 and Neumann

un|Γ = 0 scattering problem, respectively. un, u
(scat)
n and u

(inc)
n are the first normal

derivatives of u, u(scat), and u(inc) respectively.

Mathematical problems are often described better in some specific coordinate

system while in another system of coordinates the problem may have a less conve-
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nient representation. In boundary value problems one may change the coordinate

system to match the shape of the boundary, e.g. use polar coordinates for circular

domains or elliptical coordinates domains shaped as ellipses. However, when the

shape becomes more complicated the change of coordinates may become a major

difficulty. Furthermore, choosing a complicated coordinate system may lead to an

poor quality grid or singular points, thus ruining the advantage of changing coordi-

nates. Hence, there is a tradeoff between the complexity of the grid and complexity

of the problem.

For a generally shaped body, constructing a body fitted coordinate system needs

to be done numerically. Achieving this with high accuracy may be difficult. For a

complicated body, especially in 3D, it may be impossible to construct a simple body

fitted coordinate system. A partial remedy may be to use the multi-block overlap-

ping grids, also known as chimera grids, see, e.g., [30]. Those grids, however, do

not completely remove the difficulty associated with fitting the grid to a curvilinear

boundary. They rather partially alleviate it, because the grid no longer has to be

fitted to the entire boundary. Instead, different blocks serve different fragments of

the boundary, and instead of point matching, the grids are allowed to overlap on

some common regions, which simplifies their generation. Yet another alternative is

to use the finite element method based on an unstructured grid, see Section 1.2.

In this work we use a finite difference scheme with a regular grid regardless of

the shape of the body, and still obtain high order accuracy of the numerical solution.
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1.1.1 Helmholtz equation in different coordinate systems

We next recast the Helmholtz equation two non-Cartesian coordinate systems. The

main difficulty is the Laplacian, which is defined as divergence of the vector gradient,

i.e. ∆u = div(gradu) ; one denotes div = ∇· and grad = ∇ to get ∆ = ∇ ·∇ = ∇2.

In the Cartesian coordinates one gets

∆ = ∇ ·
(

∂

∂x1
, . . . ,

∂

∂xn

)
=

n∑
j=1

∂2

∂x2
j

.

Things are more complicated in polar coordinates, which are given as


x = r cos θ,

y = r sin θ,

where r ≥ 0 is a radius and 0 ≤ θ ≤ 2π is the angular coordinate. Using the chain

rule one gets

∂2

∂x2
=

∂

∂x

(
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ

)
=

∂

∂x

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
= cos θ

∂

∂r

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
− sin θ

r

∂

∂θ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
= cos θ

(
cos θ

∂2

∂r2
−
(

sin θ

r

∂2

∂r∂θ
− sin θ

r2

∂

∂θ

))
− sin θ

r

(
cos θ

∂2

∂θ∂r
− sin θ

∂

∂r
−
(

sin θ

r

∂2

∂θ2
+

cos θ

r

∂

∂θ

))
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and consequently

∂2

∂y2
=

∂

∂y

(
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ

)
=

∂

∂y

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
= sin θ

∂

∂r

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
+

cos θ

r

∂

∂θ

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
= sin θ

(
sin θ

∂2

∂r2
+

cos θ

r

(
∂2

∂θ∂r
− 1

r

∂

∂θ

))
+

cos θ

r

(
cos θ

(
∂

∂r
+

1

r

∂2

∂θ2

)
+ sin

(
∂2

∂r∂θ
− 1

r

∂

∂θ

))

to arrive at the well known formulation

∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

Such a complicated derivation is usually not convenient. Fortunately, bet-

ter methods exist. Consider an orthogonal curvilinear coordinate system y =

y(x ),x ∈ Rn. Define scale factors (also called metrics or Lame coefficients) as

h2
j =

∑n
m=1

(
∂ym
∂xj

)2
. Then the vector gradient becomes ∇ =

(
1
h1

∂
∂x1

, . . . , 1
hn

∂
∂xn

)
and the Laplacian becomes

∆ =
1∏n

j=1 hj

n∑
m=1

∂

∂xm

(∏
p 6=m hp

hm

∂

∂xm

)
.

Returning to polar coordinates one gets

hr =

√(
∂x

∂r

)2

+

(
∂y

∂r

)2

=
√

cos2 θ + sin2 θ = 1,

hθ =

√(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

=
√
r2 sin2 θ + r2 cos2 θ = r,
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and the Laplacian is:

∆ =
1

hrhθ

[
∂

∂r

(
hθ
hr

∂

∂r

)
+

∂

∂θ

(
hr
hθ

∂

∂θ

)]
=

1

r

[
∂

∂r

(
r
∂

∂r

)
+

∂

∂θ

(
1

r

∂

∂θ

)]
=

1

r

[
∂

∂r
+ r

∂2

∂r2
+

1

r

∂2

∂θ2

]
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.
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Figure 1.2: Elliptical Coordinates

Elliptical coordinates are given by x+ iy = d cosh(η + iϕ) or, equivalently,


x = d cosh η cosϕ

y = d sinh η sinϕ

=


x = a cosϕ

y = b sinϕ

(1.5)

where d is semi-focal distance, η is an elliptical radius, so that each value of η defines

an unique ellipse with d =
√
a2 − b2, a = d cosh η, and b = d sinh η are the major

and minor semi-axes, respectively, and x2

a2
+ y2

b2
= cos2 ϕ+ sin2 ϕ = 1.
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In this case we have

hη = hϕ = d

√
sinh2 η cos2 ϕ+ cosh2 η sin2 ϕ

= d

√
sinh2 η cos2 ϕ+ cosh2 η(1− cos2 ϕ)

= d

√
−(cosh2 η − sinh2 η) cos2 ϕ+ cosh2 η

= d

√
cosh2 η − cos2 ϕ = d

√
sinh2 η + sin2 ϕ

and consequently,

∆ =
1

h2
η

(
∂2

∂η2
+

∂2

∂ϕ2

)
.

1.2 Numerical approximation of differential equations

Finite difference (FD) methods were historically the first methodology for the nu-

merical solution of differential equations [54, 49]. They still remain a very powerful

tool, and for smooth solutions on regular grids lead to inexpensive and efficient algo-

rithms. Their primary disadvantage is in dealing with more complicated geometries

and solutions with low regularity. In particular, when the boundary is not aligned

with the grid staircase meshing doesn’t provide the required accuracy. For example,

consider a circular body Ω1 in Cartesian coordinates, see Figure 1.3. Denote the

circular boundary shape Γ = ∂Ω1 and let (x, y) ∈ Γ. Let vi,j be the approximate

value of the solution v at nodes xi = x + δx and yj = y + δy, i.e. vi,j ≈ v(xi, yj).

Let b(x, y) be the boundary value given on curve Γ and assume (xi, yj) /∈ Γ. The
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Figure 1.3: Circular body in Cartesian coordinates, staircase-mesh γ.

staircase approach states vi,j = b(x, y). However, since

v(xi, yj) = b(x, y) +∇v(x, y) · (δx, δy) +O(δx2 + δy2),

and ∇v is not available, the boundary data is approximated by a first order method.

For additional discussion about staircase meshing and it’s disadvantages see [34].

The immersed boundary method (IBM) of Peskin [45] requires a modification of

the governing equations to treat the geometric irregularities, and a smoothed ap-

proximation of the δ function to treat the discontinuity at the interface, to achieve

first order accuracy. It has been improved upon with the immersed interface method

(IIM) of LeVeque and Li [37] (also see their book [38]). They enforce the jump at the

interface directly in the finite difference scheme. The implementation suffers from
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increased complexity, but second order accuracy can be achieved. Later Zhang and

LeVeque [71] used fictitious points to modify the discrete linear system to account

for the correct position of the interface and the proper physical interface condi-

tions. Recently Xu [68] developed efficient and stable boundary condition capturing

immersed interface method for simulating a flow around an object. The method

have almost a second order accuracy for the velocity and above first order for the

pressure. Johansen and Colella [36] used Embeded boundary to solve Poison equa-

tion with variable coefficients and Dirichlet boundary condition on irregular domain

using Cartesian grid with second order accuracy. They extended the solution into

a fictitious domain and the resultant linear system is non-symmetric. However it

is compatible with a multigrid and adaptive mesh techniques which should improve

the complexity. These techniques though aren’t immediately extendable for the

Helmholtz equation. Recently, Crockett, Colella and Graves [16] used this method

for Poison and heat equations with discontinuous coefficients and reached second

order. To the best of our knowledge, there are no reported uses in the literature of

those methods for anything but simple Dirichlet, Neumann, or interface conditions

(continuity of the solution and its normal flux), changing the boundary condition

requires major changes to the algorithm [16], and extension to higher than second

order accuracy is not straightforward. The ghost-cell immersed boundary method

(GCIBM) [62] employes extrapolation to impose the boundary condition implic-

itly; and the immersed boundary projection method (IBPM) [60] treats the no-slip

boundary conditions along with the immersed boundary as a Lagrange multiplier.

All these methods are difficult to generalize to high order accuracy.

A high order method (up to sixteenth-order accuracy) for elliptic equations, for
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a matched interface and boundary method (MIB), was introduced by Zhou et al.

[74, 73]. The high-order interface conditions are implemented by repeatedly match-

ing the interface conditions across the given interface using low-order numerical in-

tegration rules. A special procedure is proposed to determine the accurate fictitious

values required for the high-order scheme. This method is meant to treat interface

curves that are not aligned to the grid, jumps in coefficients, and singular sources.

However, all the examples presented in [74, 73] reduce to a problem with only singu-

lar sources. Six new versions of IIM of fourth order accuracy were provided by Zhong

[72]. He used two different polynomials on both sides of the interface and enforced

that the two polynomials satisfy two interface conditions. Zhong used a wide stencil

that requires additional purely numerical boundary conditions. The only examples

provided were the Poisson equation with a singular source or equivalent.

An interesting solver was presented by Abarbanel and Ditkowski [1]. They con-

sidered a diffusion equation in one and two dimensions on a domain with a body

whose boundary points do not coincide with the nodes of a rectangular mesh. In

order to reach the fourth order accuracy, energy methods were used in conjunction

with simultaneous approximation terms (SAT). However, the resulting linear system

should be negative definite, which is not the case for the Helmholtz equation.

The finite element method (FEM) [58, 13, 7] and its extensions (GFEM, XFEM,

discontinuous enrichment [22, 23]), as well as discontinuous Galerkin methods [31],

are also well established and powerful. Their strength is in dealing with complex

geometries and low regularity of the solutions.

In practical problems of wave propagation though, especially in 3D, both FD
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and FEM have serious limitations because of their relatively high “points-per-

wavelength” requirement, as well as numerical dispersion and, more generally, nu-

merical pollution [35, Section 4.6.1], [5, 2]. The numerical phase velocity of the

wave in these methods depends on the wavenumber k, so a propagating packet of

waves with different frequencies gets distorted in the simulation. Furthermore, the

numerical error depends strongly on the wavenumber k, see [35], and this kind of

error is inherent in FEM/FD. The error behaves like hpkp+1 where p is the order of

accuracy of the scheme. So the number of points per wavelength needed for a given

accuracy grows like k1/p. Hence, for higher order accurate schemes the pollution

effect is reduced.

A high order approximation can be built for arbitrary boundaries using FEM,

but only in fairly sophisticated and costlier algorithms with isoparametric elements

[58]. In discontinuous enrichment / discontinuous Galerkin methods and GFEM,

high order accuracy also requires additional degrees of freedom, which entails an ad-

ditional computational cost. These additional degrees of freedom lead to expanded

approximating spaces which are capable of approximating a very broad class of

functions that may, in principle, have irregularities anywhere in the computational

domain. This is a significant advantage in problems of great geometrical and phys-

ical complexity. However, for simpler problems with smooth solutions much more

targeted and economical approximations, in narrower functional spaces, are available

using FD methods.

A FD approach, on the other hand, does not introduce additional unknowns per

grid node and thus remains inexpensive. It, however, requires a higher regularity

of the solution to guarantee consistency, and may also need a wider stencil, which
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complicates the boundary conditions (more precisely, requires additional “purely

numerical” boundary conditions).

Schemes known as Collatz “Mehrstellen” [14], equation-based and related com-

pact schemes [55, 66, 69, 33, 3, 4, 8, 9], as well as Trefftz-FLAME [63], don’t expand

the stencil and therefore don’t require additional nonphysical boundary conditions.

Furthermore, as opposed to classical FEM which expands the approximating space,

these methods reduce it to the class of solutions rather than the much broader class

of generic sufficiently smooth functions. This does not imply any loss of generality,

because according to the Lax theorem, for convergence one does not need to have

consistency for any functions except the solutions.

1.2.1 Compact Equation–Based Schemes

We next present the compact scheme used hereafter in our simulations. Consider

ui,j = u (xi, yj), then the second order accurate approximation to the second deriva-

tive in x yields

Dxxui,j =
ui+1,j − 2ui,j + ui−1,j

h2
x

. (1.6)

Using Taylor series one can show that

Dxxui,j = uxx +
h2
x

12
uxxxx +O

(
h4
)
.



1.2. NUMERICAL APPROXIMATION OF DIFFERENTIAL EQUATIONS 39

To obtain a 4th order approximation one eliminates uxxxx using the two dimensional

Helmholtz equation −uxx = uyy + k2u− F . Differentiating this equation we obtain

−uxxxx = uyyxx +
(
k2u
)
xx
− Fxx = DyyDxxu+Dxx

(
k2u− F

)
+O(h2)

where Dyyui,j =
ui,j+1−2ui,j+ui,j−1

h2y
. Thus, the fourth order compact scheme is given

by

D̃xxui,j = Dxxui,j −
h2
x

12

(
DyyDxxu+Dxx

(
k2u− F

))
= uxx +O

(
h4
)
. (1.7)

Using a similar approach for the derivative in y, one gets the scheme of Singer and

Turkel [55]

(
Dxx +Dyy + k2 +

1

12

(
h2
x + h2

y

)
DxxDyy

)
u+

1

12

(
h2
xDxx + h2

yDyy

) (
k2u
)

=

(
1 +

1

12

(
h2
xDxx + h2

yDyy

))
F. (1.8)

Compact fourth order accurate schemes for the more general Helmholtz -type

equations with variable coefficients have been obtained in [8, 9]. A sixth order

scheme for constant coefficients is constructed in [56]. A similar compact sixth

order scheme for the case of a variable wavenumber k = k(x ) is presented in [65].

A distinctive feature of the compact equation-based schemes is that they exploit

two stencils. The first one applies to the left-hand side of the equation, i.e., it

operates on the unknown solution. The second one applies to the right-hand side of
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the equation, i.e. , it operates on the given data (source terms). The equation-based

and similar high order schemes reduce pollution while keeping the treatment of the

boundary conditions simple. Since the order of the resulting difference equation is

equal to the order of the differential equation, no nonphysical boundary conditions

are required.

1.2.2 Reduction to integral equations

In traditional boundary element methods (BEM), linear boundary value problems

are transformed into integral equations with respect to equivalent boundary sources,

which are subsequently discretized. Practical applications of such methods date

back to the 1960s. They impose no limitations on the shape of the boundary and

automatically account for the correct far field behavior. There are, however, several

major disadvantages:

• Full matrices — in contrast with the sparse FD and FEM matrices. (Cases of

quasi-sparse integral equations, due to the rapid decay of Green’s functions in

space, are exceptional, [46]).

• A relatively narrow treatment of the boundary conditions. Care must be exer-

cised, on a case-by-case basis, in the choice of the equivalent boundary sources,

so that the resulting Fredholm equation is of the second kind (well-posed)

rather than first. Moreover, mixed (Dirichlet/Neumann, etc.) or less standard

(Robin, etc.) conditions require a special development.

• Singular integral kernels (the most serious disadvantage in practice). Imme-
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diately at the boundary points, the kernel singularity can usually be handled

analytically, and the fields remain bounded as long as the surfaces are smooth.

However, for points in the vicinity of a surface, the evaluation of the integral

is problematic, as analytical expressions are usually unavailable and numerical

quadratures require extreme care.

• Limitation to constant coefficients, i.e., to homogeneous media, — these meth-

ods require explicit knowledge of the fundamental solution of the correspond-

ing differential operator.

Significant progress in Fast Multipole Methods (FMM) [25, 12, 40, 70, 24] has

helped alleviate the first disadvantage of boundary methods. FMM accelerates the

computation of fields due to distributed sources — or equivalently, matrix-vector

multiplications for the dense system matrices. But the second and especially the

third disadvantages are more difficult to overcome, whereas the fourth one can only

be addressed by switching to much less efficient volume integral methods or finding

the fundamental solution by numerical means, which is both expensive and leads to

additional errors.
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Chapter 2

Problems with non-aligned

interfaces

In this chapter we describe our main methodological approach for solving problem

(1.2). We consider a divide and conquer approach based on wave splitting into

incoming and outgoing waves. We assemble the overall solution from the set of

individual solutions to the auxiliary problem (AP). The AP is defined independently

for each sub-domain Ωq, see (1.2). The choice of the AP is relatively flexible; it can

be formulated so as to enable an easy and economical numerical solution. Our new

method uses only simple structured grids, e.g., Cartesian or polar, regardless of

the shape of the boundaries or interfaces. In the regions of smoothness, it employs

high order accurate finite difference schemes on compact stencils, see Section 1.2.1.

They do not require any additional boundary conditions besides those needed for

the underlying differential equation itself.

43
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We first illustrate the key components of the numerical methodology that we

propose with a one dimensional example and then generalize this simple one di-

mensional model of wave splitting into a multidimensional one using Calderon’s

projections, see [39].

Consider the following one-dimensional problem

 uxx + k2
0u = 0 x < 0,

uxx + k2
1u = 0 x > 0,

(2.1)

driven by an incoming wave u(inc) = Aeik0x, which propagates through the domain.

It generates the transmitted wave u1 = Teik1x for x > 0 and partially gets reflected

and produces u0 = Re−ik0x for x < 0, see Figure 2.1.

x=0

A
ik x

e

ik x
eT

R
−ik x0

1

e 0

Figure 2.1: 1D transmission problem.
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To find the amplitudes T and R one requires that u(x) and u′(x) be continuous at

x = 0. This yields two linear algebraic equations: A+R = T and k0A−k0R = k1T ,

which provide the Fresnel reflection and transmission coefficients:

T = A
2k0

k0 + k1
, R = A

k0 − k1

k0 + k1
. (2.2)

However, one can solve this problem without introducing unknown amplitudes

and instead employ the relation that describes the entire family of waves: right

traveling u′− ik1u = 0 and the left traveling u′+ ik0u = 0. In particular, the trans-

mitted wave u1 satisfies the right traveling equation. Likewise u0 + u(inc) satisfies

the inhomogeneous left traveling equation on x < 0. So we can rewrite (2.1) as the

following system of equations

 u′ − ik1u = 0 x > 0,

u′ + ik0u = 2ik0Ae
ik0x x < 0,

(2.3)

together with the requirement that u(x), u′(x) be continuous, which yields:

u(0) = A
2k0

k0 + k1
, u′(0) = A

2ik1k0

k0 + k1
. (2.4)

Since T =A+R=u(0), we arrive at the same answer (2.2).

The system of equations (2.3) shows that if the impinging wave changes (new

amplitude A), then the problem does not have to be solved all over again, because

only the right-hand side of inhomogeneous part changes. In one dimension the

difference is negligible. However, in multiple space dimensions a methodology built
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around the same idea proves very useful. For example, in inverse problems one may

cheaply use multiple impinging waves or different incident angles to get additional

information to improve the accuracy.

In Section 2.1 we present the theoretical part for Calderon’s boundary equations

with projections which replaces the system of equations (2.3). We conclude chap-

ter Chapter 2 describing the discrete counterparts of the boundary equations with

projections developed by V.S. Ryaben’kii, see [50], in Section 2.3. The pseudocode

of the main algorithm for solving (1.2) is described in Section 2.3.1, followed by

examples and additional explanation in Sections 2.3.2 – 2.3.7.

2.1 Calderon’s Potentials

In this section we present the Calderon potentials, which yield the wave splitting

described above, see [39]. All the incoming and outgoing waves for a given Ωq

(analogues of the right and left traveling waves in 1D example, see Figure 2.1) belong

to the image (range) and kernel (null space), respectively, of the corresponding

projection operator. We consider time-harmonic wave propagation with a piecewise

continuous index of refraction.

Let Lq denote the Helmholtz operator of equation (1.1) with k = kq, where

q ∈ {0, 1}, and the geometry as depicted in Figure 1.1, i.e. we consider problem (1.2).

Let Gq(x ) be the fundamental solution of Lq. Let the functions ξI(x ) and ξII(x )

belong to C2 , C1 respectively for x ∈ Γ. We introduce the vector ξξξΓ = (ξI , ξII)

which we call the vector density. A generalized potential of Calderon type with the
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vector density ξξξΓ is defined by

PΩqξξξΓ(x ) = σq

∫
Γ

(
ξI(y)

∂Gq
∂n

(x− y)− ξII(y)Gq(x− y)

)
dsy , x ∈ Ωq, (2.5)

where ∂
∂n denotes the normal derivative and σq = (−1)q+1 changes the sign so that

we always consider a normal pointing in the same direction regardless of the domain

Ωq. Given the solution u(x ) to the problem (1.2) one defines a vector density

uΓ =
(
u, ∂u∂n

)∣∣
Γ
, and rewrites Green’s solution to the problem (1.2) as:

u(x ) =


PΩ1uΓ +

∫
Ω1
G1(x − y)F (y)dy x ∈ Ω1,

PΩ0uΓ x ∈ Ω0.

(2.6)

Let ξξξΓ = (ξI , ξII) belong to the space S . Inspired by the one dimensional

example we wish to split S into incoming S q
+ and outgoing S q

− waves for a given Ωq

such that their direct sum is S , i.e.

S = S q
+ ⊕ S q

−. (2.7)

So for each ξξξΓ ∈ S we looking for ξξξ+
Γ ∈ S

q
+ and ξξξ−Γ ∈ S

q
− such that ξξξΓ = ξξξ+

Γ + ξξξ−Γ .

Furthermore, we require that such a representation be unique. One implements it

by a projection operator whose image is Sq+ and it’s kernel is Sq−. We stress that

while the space S doesn’t change, the representation (2.7) changes for the exterior or

interior problem, e.g. S1
+ 6= S0

− in general. In addition, the choice of the projection

operator affects the representation of (2.7), which can be considered as changing

the projection angle onto the same subspace [39].
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One defines such a projection operator using Calderon’s potential (2.5). This

projection is known as the Calderon’s boundary projection. We will show that this

projection implies a wave split, see discussion in Section 2.1.1. We first define the

vector trace operator Tr v =
(
v, ∂v∂n

)∣∣
Γ
. Thus, Calderon’s boundary projection is

defined as

Pq
ΓξξξΓ = Tr PΩqξξξΓ. (2.8)

Note, that any ξξξΓ satisfies LqPΩqξξξΓ = 0, x ∈ Ωq, and therefore Green’s formula

provides PΩqξξξΓ = PΩqTr PΩqξξξΓ which immediately implies that Pq
Γ is a projection

since (Pq
Γ)2 = Pq

Γ.

The operator Pq
Γ has an important property. If ξξξΓ defines u(x) = PΩqξξξΓ for

which Tr u(x) = ξξξΓ , then the following equation holds

Pq
ΓξξξΓ = ξξξΓ. (2.9)

If equation (2.9) holds, then u(x) = PΩqξξξΓ satisfies Lqu = 0, and Tr u = ξξξΓ.

Finally, we have proved that ξξξΓ satisfies the BEP if and only if ξξξΓ = Tr u for which

Lq u = 0 [51, 53, 39]. We call equation (2.9) the boundary equation with projection

(BEP).

2.1.1 Wave Split

The solutions to the homogeneous equation Lqu = 0 can be interpreted as incoming

waves for the domain Ωq, because they have no (radiating) sources on Ωq. In order

to describe how Calderon’s projection splits the waves [39], we first recast equation
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(2.5) as:

PΩqξξξΓ(x ) =


σq
∫

Γ

(
ξI(y)

∂Gq

∂n (x − y)− ξII(y)Gq(x − y)
)
dsy , x ∈ Ωq,

0 x ∈ Rn \ Ωq.

(2.10)

Next we define Green’s operator on Lq as

GqF (x ) =


∫

Ωq
Gq(x − y)F (y)dy , x ∈ Ωq,

0 x ∈ Rn \ Ωq.

(2.11)

Thus, one expresses the exterior solution as u0(x ) = PΩ0u
0
Γ(x ) where

u0
Γ = Tr u0 =

(
u0,

∂u0

∂n

)∣∣∣∣
Γ

,

and the interior solution as the u1(x ) + G1 F (x ) = PΩ1u
1
Γ(x ) + G1 F (x ) where

u1
Γ = Tr u1 =

(
u1,

∂u1

∂n

)∣∣∣∣
Γ

.

Hence, the solution to the problem (1.2) is given by

u(x ) = u0(x ) + u1(x ) + G1 F (x ), x ∈ Rn. (2.12)

We next denote uΓ = u1
Γ + u0

Γ. Note, that in general uΓ does not satisfy the

BEP unless uΓ = uqΓ. This means that the operator Pq
ΓξξξΓ eliminates that part of ξξξΓ

which is not the trace of the solution of Lqu = 0. In other words incoming waves to

Ωq, denoted as ξξξ+
Γ , belong to the image of the projection Pq

Γ, i.e. ξξξ+
Γ ∈ ImPq

Γ while
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outgoing waves to Ωq satisfy ξξξ−Γ ∈ KerPq
Γ. Therefore, the aforementioned space S

satisfies S = ImPq
Γ ⊕KerPq

Γ, since Sj+ = ImPq
Γ and Sj− = KerPq

Γ.

The operators P qΓ are defined in such a way so that if there is no discontinuity,

i.e. k0 = k1 then ImP1
Γ = KerP0

Γ and KerP1
Γ = ImP0

Γ, and so there are no reflections

at Γ. However, in general ImP1
Γ 6= KerP0

Γ and KerP1
Γ 6= ImP0

Γ, which means that

there is both propagation through and reflection from the interface Γ, similar to the

1D case, see Figure 2.1.

2.1.2 Reduction of the problem to the boundary

For an exterior domain Ω0 the solution is u = ũ+u(inc) where ũ denotes the scattered

field satisfying the Sommerfeld radiation condition (1.3). Therefore, due to the

linearity of the trace operator, the density ξξξΓ for the exterior domain is given by

ξξξΓ = Tru = Tr ũ+ Tru(inc) = ξ̃ξξΓ + ξξξ
(inc)
Γ .

To satisfy (1.3) one formulates the BEP for the exterior problem for the scattered

field:

P0
Γ ξ̃ξξΓ = ξ̃ξξΓ.

However, in order to match it to the interior part one complements it, for the total

field, by adding P0
Γ ξξξ

(inc)
Γ + ξξξ

(inc)
Γ to both sides of the equation. Hence, assuming

that the solution and its first normal derivative are continuous across Γ, we can

equivalently reformulate problem (1.2) as the following system of BEP [53] defined

on ξξξΓ:
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P1

Γ ξξξΓ + TrG1F = ξξξΓ,

P0
Γ ξξξΓ + (I −P0

Γ)ξξξ
(inc)
Γ = ξξξΓ.

(2.13)

System (2.13) can be thought of as a multi-dimensional analogue of system (2.3).

Once (2.13) has been solved for ξΓ, the solution u(x) is given by

u(x ) =


PΩ1ξξξΓ(x ) + G1F (x ) x ∈ Ω1,

PΩ0 [ξξξΓ − ξξξ(inc)
Γ ](x ) + u(inc)(x ) x ∈ Ω0.

(2.14)

Note that the application of the trace operator Tr reduces system (2.14) back to

(2.13).

2.1.3 Divide and Conquer

One of the important generalizations of the proposed method is that one can redefine

(2.13) in such a way so that it is possible to solve it as two separate auxiliary prob-

lems (AP) one for the interior and one for the exterior domain. Such an approach

has several advantages. For example, one can solve each of the auxiliary problems

on a different grid. Another example is that one can change the Sommerfeld approx-

imation without recalculating the auxiliary problem for the interior area. However,

the main advantage is the relatively simple treatment of curvilinear interfaces Γ as

will be explained in the next section.

Consider an arbitrary function w(x ), x ∈ Rn, that satisfies the Sommerfeld

radiation condition (1.3) and such that Trw = ξξξΓ = (ξI , ξII). Generally Lqw 6= 0,
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x ∈ Ωq, and therefore Green’s formula gives:

w(x ) = PΩq wΓ + Gq Lq w, x ∈ Ωq.

Using the fact that PΩq wΓ = PΩq ξξξΓ(x ), we get

PΩq ξξξΓ(x ) = w(x )−GqLqw, x ∈ Ωq. (2.15)

We next generalize (2.15) in the following way: let Lq be defined for x ∈ Rn

(instead of x ∈ Ωq). We reformulate PΩq so that the equation (2.5) becomes

PΩq ξξξΓ(x ) = w(x )−Gq

{
(Lqw)

∣∣
Ωq

}
, x ∈ Ωq. (2.16)

The potential (2.16) is obtained on Rn and then restricted to Ωq. Furthermore, it

is insensitive to the choice of w as long as the conditions Trw = ξξξΓ and (1.3) hold.

The projection Pq
Γ defined through (2.16) is the same as one defined through (2.5).

The importance of this new definition is that it does not contain surface integrals.

This further generalization is the key feature in the treatment of generally shaped

bodies that are not aligned to the numerical grid, which is discussed in Section 2.3.

Let Ω̃q be a regularly shaped expanded domain such that Ωq ⊂ Ω̃q. Assume that Lq

is also defined on Ω̃q, and that Gq is the corresponding inverse so that the solution u

to the equation Lqu = F on Ω̃q is given by u = GqF . Hereafter, we assume that this

solution exists for any given F defined on Ω̃q and is unique as along as u is required

to satisfy some specially chosen boundary conditions at ∂Ω̃q. The combination of

the differential equation Lqu = F and these boundary conditions will be referred to
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as the auxiliary problem (AP). The AP can be constructed so that it is easy to solve.

In particular, the evaluation of GqF does not need to involve any singular integrals.

Instead, the AP is discretized, and its solution computed using finite differences on

a regular grid (see Section 2.3). Finally, problem (1.2) is solved as two different

BEPs defined on ξξξΓ: 
P1

Γ ξξξ
1
Γ + TrG1F = ξξξ1

Γ,

P0
Γ ξξξ

0
Γ + (I −P0

Γ)ξξξ
(inc)
Γ = ξξξ0

Γ,

(2.17)

subject to the condition

Aξξξ1
Γ + Bξξξ0

Γ = 0 , (2.18)

which is an additional generalization to (2.13) where A = B = 1. This last gener-

alization is the pathway for different interface conditions.

We denote ξξξqΓ = (ξIq , ξ
II
q ) where q ∈ {0, 1} refers to the interior or exterior traces

in (2.17). ξIq , ξIIq are the solution and it’s normal derivative on the interface Γ,

and are therefore unknown. In order to solve system (2.17) one expands both ξξξ1
Γ,

ξξξ0
Γ in some basis, e.g. Fourier, so that the coefficients of the expansion become the

unknowns of the problem. Once the coefficients are known and ξξξ1
Γ, ξξξ0

Γ assembled,

the solution is computed by (2.14). We describe this approach in more detail and

provide examples in Section 2.3.
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2.1.4 Boundary conditions

When one solves only the exterior or interior part of (2.17) the interface condition

on Γ becomes a boundary condition lΓu = φ. One recasts it as

lΓ(PΩ1 ξξξ
1
Γ + G1F ) = φ (2.19)

for an interior problem. The system of equations (2.17), (2.19) is then solved with

respect to ξξξ1
Γ.

For an exterior problem it becomes

lΓ(PΩ0 ξ̃ξξ
0

Γ + u(inc)) = φ (2.20)

and the system of equations (2.17), (2.20) is to be solved with respect to ξ̃ξξ
0

Γ.

The operator lΓ that defines the boundary condition in the problem can be

arbitrary, ranging from very simple (e.g., Dirichlet or Neumann) to very general

(e.g., different type on different parts of Γ, nonlocal, etc.). Systems (2.17), (2.19) or

(2.17), (2.20) are still equivalent to the relevant interior or exterior problem.

In practice, Calderon’s potentials and projections are approximated by differ-

ence potentials and projections, respectively, see [53]. In doing so, the discrete

counterparts of formula (2.16) are developed and used, so that one never needs

to approximate singular surface integrals. Instead, one needs to solve a discrete

auxiliary problem that can be chosen convenient for a numerical solution.
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2.2 Well-posedness

We assume that the original problem (1.2) is well-posed, i.e., that its solution exists,

is unique, and depends continuously on the data F (x ), φ, in the sense of appropri-

ately chosen norms. Then, the equivalent problem on the interface (2.17), (2.18)

or on the boundary (2.17), (2.19) or (2.17), (2.20) is also well-posed. This means

that if the BEP is perturbed, then the solution of the boundary system will also get

perturbed, and the perturbation of the solution will be bounded in the appropriate

norm by the perturbation introduced into the BEP.

For instance, consider the interior homogeneous case:

Lu = 0 on Ω and lΓu = φ on Γ,

for which the equivalent boundary formulation is

PΓξξξΓ − ξξξΓ = 0 and lΓ(PΩξξξΓ) = φ.

If the original problem is well-posed, then ‖u‖ 6 c‖φ‖, and consequently,

‖ξξξΓ‖ 6 c1‖φ‖.

This result has nothing to do with Calderon’s operators per se, it holds simply

because ξξξΓ = Tru. LetψψψΓ be a perturbation, so that instead of the true unperturbed

boundary problem we are solving

PΓξξξΓ − ξξξΓ = ψψψΓ and lΓ(PΩξξξΓ) = φ.
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Then, we have

‖ξξξΓ‖ 6 C(‖φ‖+ ‖ψψψΓ‖),

where the constant C depends on ‖PΩ‖ and ‖PΓ‖, but does not depend on either

φ or ψψψΓ. The proof can be found in [52, Part II, Chapter 1]. It is based on splitting

the entire space of traces ξξξΓ on Γ into the direct sum: ImP j
Γ ⊕KerP j

Γ as discussed

above.

2.3 Discrete Calderon’s Potentials

We now develop the discrete counterpart of the theory introduced in the previous

section. To make the presentation easier we first describe it in relatively simple

algorithmic terms in Section 2.3.1 followed by several representative problems and

their solution supported by BEP theory in mathematical and algorithmic terms in

following sections. We stress, despite the fact that we only provide examples with

simple regular shapes, the theory remains unchanged for a generally shaped body.

2.3.1 Algorithm

In this section we present a sequence of simple algorithmic steps that implements

the solution of problem (1.2).

Thus, we provide pseudocode of the main procedures required to implement our

method and give several algorithms for solving the problem in a domain not aligned

to the grid including the transmission-reflection algorithm in heterogeneous media

with a jump at the interface and an efficient algorithm for multiple impinging waves.
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The main advantage of our method is that for each sub-domain Ωq, see (1.2), we

compute a relatively small set of individual solutions to a simple auxiliary problem

on a regular domain formulated to be numerically effective. Individual solutions are

used to assemble the solution of the original problem.

More precisely, we solve the system of BEPs (2.17), (2.18) as follows. For each

BEP, exterior (q = 0) or interior (q = 1) we consider an expansion of ξξξqΓ = (ξIq , ξ
II
q )

in some basis on Γ, e.g. Fourier:

ξIq (s) =
∑

cI,qn bn(s), (2.21a)

and

ξIIq (s) =
∑

cII,qn bn(s), (2.21b)

so that the problem is reduced to finding the coefficients cI,qn , cII,qn that satisfy the

condition

A
(∑

cI,0n bn(s),
∑

cII,0n bn(s)
)

+ B
(∑

cI,1n bn(s),
∑

cII,1n bn(s)
)

= 0 (2.22)

obtained by substituting expressions (2.21) into formula (2.18). Each individual

solution corresponds to a basis function chosen on Γ and extended to it’s grid rep-

resentation γ by means of the operator T to be defined in Section 2.3.1.2.

In the following sections we define γ, then describe the extension of basis func-

tion, and then describe and provide pseudocode of the discrete counterpart of

Calderon’s potentials theory followed by examples of solutions to several problems.
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2.3.1.1 The grid representation of the boundary shape

p
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p
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Figure 2.2: 9-point stencil centered at node pi,j

We define now the grid representation of the curve Γ, which we denote γ, in a

following way. Let Ω be a smooth body in the domain represented by regular grid

N, e.g. Cartesian. Since Ωq is not necessary aligned to the grid, the intersections

between N and Γ may be an empty set, therefore we define γ to be a set of grid

points surrounding Γ. Formally, let Npi,j be the stencil centered at node pi,j , e.g.

the 9-point stencil on Figure 2.2 and let N+,N− be non-empty sets defined as

N+ =
⋃

pi,j∈Ωq

Npi,j , N− =
⋃

pi,j∈N\Ωq

Npi,j ,

where q ∈ {0, 1}. Then the grid representation of the curve Γ, γ, is given as

γ = N+ ∩ N−. (2.23)

An example of γ for general body in Cartesian coordinates is shown in Figure 2.3.

In Figure 2.4 we present γ for a similar general body in polar coordinates.
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Figure 2.3: Example of γ: general body in Cartesian coordinates.

2.3.1.2 Extension of the basis function

We next define a new scalar function ξξξqγ in the vicinity of Γ which represents the

numerical counterpart of the trace of the solution ξξξqΓ. ξξξqγ is obtained by extension

of ξξξqΓ from Γ to γ using Equation-Based extension. The idea behind Equation-

Based extension is similar to the approach used to construct compact schemes (see

Section 1.2.1). Given the function and the first normal derivative contained in ξξξqΓ,

one differentiates the Helmholtz equation Lq u = F to obtain higher order normal

derivatives and uses these to build a Taylor formula (2.24) that yields the value of
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Figure 2.4: Example of γ: general body in polar coordinates.

ξξξqγ at every node γ.

v(n+ δn, s) = v(n, s) +
N∑
t=1

1

t!

∂tv(n, s)

∂nt
δnt (2.24)

We denote the Equation-Based Taylor extension as ξξξqγ = T (ξIq , ξ
II
q , F |Γ) where F

is the source term of the equation. An example of Equation-Based Taylor extension

in polar coordinates can be found in Section 2.3.2 and in Section 2.3.5 we show the

extension in elliptic coordinates. The general case is analyzed in [42].

The extension T applies to any boundary vector function ξξξΓ = (ξIq , ξ
II
q ), and
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defines a new scalar function in the vicinity of Γ that we need to evaluate at the

nodes γ. The operator T (·, ·, 0) is linear. If it happens that ξIq = u|Γ and ξIIq = ∂u
∂n

∣∣
Γ
,

where u is a solution to the Helmholtz equation Lq u = F on Ωq, then T (ξIq , ξ
II
q , F |Γ)

approximates u at the nodes γ with the accuracy determined by the order of the

Taylor formula (2.24).

The number of terms in the Taylor formula (2.24) should be taken as the min-

imum that would guarantee the design rate of grid convergence of the overall al-

gorithm, see page 62 and Section Section 3.1.1. Increasing the number of terms

beyond that minimum will not speed up the convergence any further, as its rate is

limited by the order of accuracy of the scheme. Therefore, in practice the order of

the Taylor formula (2.24) is always kept fixed. In theory, however, this order can be

allowed to increase. Then, by invoking a Cauchy-Kowalevski type argument, we can

conclude that the series will converge at the points sufficiently close to the boundary

as long as all the data are analytic. Among other classes of equations, this result

holds for elliptic PDEs, which is our case.

Due to the linearity of the extension T one extends the basis functions bn(s)

in expansion (2.21). For an interior subproblem we define ξIγ,1(n) = T (bn, 0, 0),

ξIIγ,1(n) = T (0, bn, 0), and ξFγ,1 = T (0, 0, F |Γ), where the latter is used for compu-

tational efficiency, otherwise the contribution of the source term is unnecessarily

calculated several times. Thus we get

ξIγ,1 =
∑

cI,1n ξIγ,1(n) (2.25a)
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and

ξIIγ,1 =
∑

cII,1n ξIIγ,1(n), (2.25b)

and we define

ξξξ1
γ = ξIγ,1 + ξIIγ,1 + ξFγ,1. (2.26)

For an exterior (homogeneous) subproblem we define ξIγ,0(n) = T (bn, 0, 0) and

ξIIγ,0(n) = T (0, bn, 0), thus

ξIγ,0 =
∑

cI,0n ξIγ,0(n) (2.27a)

and

ξIIγ,0 =
∑

cII,0n ξIIγ,0(n), (2.27b)

and we define

ξξξ0
γ = ξIγ,0 + ξIIγ,0. (2.28)

Theoretically, to reach nth order of accuracy for the overall solution to the prob-

lem one requires N = n+ 2, see [47]. However the experimental results presented in

Section 3.1.1 and in [42] show that it is sufficient to take N = n.

We should also mention that according to [28, 27, 59], for maintaining the overall

given order of accuracy across the domain, it may be sufficient to approximate the

boundary conditions with lower accuracy. In the future, it may be of interest to

investigate whether this phenomenon is related to our finding that the order of the

extension operator can be taken lower than theoretically predicted.
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2.3.1.3 Difference Potentials

In section Section 2.1.3 we required an arbitrary function w(x ), x ∈ Rn, that satisfies

the Sommerfeld radiation condition (1.3) and such that it’s vector trace is equal ξξξΓ,

i.e. Trw = (w,wn) = (ξI , ξII) = ξξξΓ where wn is the normal derivative of w along

Γ. We denote the discrete trace operator similarly as the continuous one, i.e. Tr .

In the discrete case the trace operator become the value of the function at the grid

boundary γ, i.e. Trw = w|γ . Thus, we require the discrete w to satisfy Trw = ξξξγ ,

where ξξξγ defined in Section 2.3.1.2.

Numerically one creates w(x ) using the same structure and the same size as the

solution to the problem. One fills w(x ) with values of ξγ at nodes corresponding to

γ and zeroes elsewhere. We present such a procedure in Algorithm 1:

Algorithm 1 Create w from ξγ

function W(ξγ)
w ← 0 on grid N
w|γ ← ξγ
return w

end function

Let S(N, k, F, g̃) be a solver of the equation (1.1) on some regular grid N subject

to the numerical boundary condition u|∂N = g̃, where ∂N is the informal notation

for boundary nodes of N. We seek to solve the same AP with different source terms.

Therefore, we choose a fixed g̃ to provide uniqueness and redefine the solver as

S(N, k, F ). Let n be the order of accuracy of S. One can use the solver described

in Section 1.2.1 or as described in more detail in [65, 42, 10, 55, 41]. We denote by

S the solver for either the exterior or interior problem.

We next define, in Algorithm 2, the discrete counterpart of Calderon’s potential
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PΩq which, unlike in continues case, will take as input w(x ) instead of ξγ (see Section

2.1.3) and assume that Trw = ξξξγ or similarly w(x )|γ = ξγ , i.e. here we consider

w(x ) is known:

Algorithm 2 Calderon Potential PΩqξγ

function PΩq
(N,k,w) . Assuming Trw = ξξξγ

rhs← 0 on grid N
rhs|Ωq ← (Lq w)|Ωq . set an artificial rhs
v ← S(N, k, rhs)
return w − v . return potential, see sections 2.1,2.3

end function

(Lq w)|Ωq is the result of the direct Helmholtz operator Lq on the entire grid N and

truncated to the domain of interest Ωq.

One defines Calderon Potential in the following way. Let u(s) = h(s) and

∂u
∂n (s) = g(s) therefore:

Algorithm 3 Another definition of Calderon Potential

function P̃Ωq
(N,k,h,g,F )

ξγ ← T (h, g, F )
w ←W(ξγ)
return PΩq (N, k, w)

end function

The difference between Algorithm 2 and Algorithm 3 is that the latter creates w from

u and ∂u
∂n using an extension T while the former gets w as an argument. Algorithm

2 can be used more effectively for multiple values of w, therefore Algorithm 3 is not

used in further algorithms and presented here for didactic purpose only.

We now define the projection operator, which numerically become a truncation

of the Calderon operator in Algorithm 4.
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Algorithm 4 Projection operator

function P qγ (N,k,ξγ)
w ←W(ξγ)
return PΩq

(N, k, w)|γ
end function

2.3.1.4 Examples of solutions to different problems

We next solve the homogeneous problem Lqu + k2
qu = 0 in a domain Ωq (either

interior or exterior) and let the boundary condition bc of type bc type be given on

∂Ωq. We assume that the solution has an expansion in some functional basis, e.g.

Fourier, u(s) =
∑

n c
1
nbn(s) and ∂u

∂n (s) =
∑

n c
2
nbn(s) and get

Algorithm 5 The Solver for a homogeneous problem

function Homogeneous-SolverΩq
(N,k,bc type,bc)

(ξIγ , QI , ξ
II
γ , QII)← BEPq(N, k) . See Algorithm 6

(cI , cII)← Coefficients(QI , QII , bc type, bc, 0) . See Algorithm 7
u← 0 on grid N
u|Ωq

← (Sq(N, k, ξIγcI + ξIIγ c
II))|Ωq

return u
end function

Algorithm 6 used in Algorithm 5 plays the discrete counterpart of (2.9) which

one recasts as Pq
γξξξγ = ξξξγ . The algorithm Algorithm 6 doesn’t provide the solution

to BEP, but the matrix with columns of (P qγ −I)ξγ(n) where ξγ(n) denotes nth basis

function extended to the γ, see Section 2.3.1.2. This matrix is used to construct the

linear system which is solved to find the coefficients of the expansion (2.21).
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Algorithm 6 BEP

function BEPq(N,k) . Calculate operator (P qγ − I)ξγ
foreach Basis Functions bn

ξIγ(n)← T (bn, 0, 0) . set ξγ ’s as columns of matrices ξIγ , ξ
II
γ

ξIIγ (n)← T (0, bn, 0)

5: PI(n)← P qγ (N, k, ξIγ(n)) . solutions to AP’s are columns of PI , PII
PII(n)← P qγ (N, k, ξIIγ (n))

end foreach

QI ← PI − ξIγ
QII ← PII − ξIIγ

10: return (ξIγ , QI , ξ
II
γ , QII)

end function

The coefficients are actually found using Algorithm 7 in the least square sense using

QR, since the linear system is redundant for sufficiently fine grid. It is solved by

least squares via QR. See [42] and following examples.

Algorithm 7 Compute coefficients of an expansion on an interface

function Coefficients(QI ,QII ,bc type,bc,InHomoPart)
c← CoeffsOf(bc) . coefficients of bc =

∑
n cnbn

switch bc type
case Dirichlet . u|γ = bc

5: cI ← c
cII ← QR(QII , −QI cI − InHomoPart)

case Neumann . un|γ = bc
cII ← c
cI ← QR(QI , −QII cII − InHomoPart)

10: case Robin . (αu+ βun)|γ = bc
cI ← QR(QI − α

βQII , −QII c− InHomoPart)
cII ← 1

β ĝ −
α
β c

I

end switch
return (cI , cII)

15: end function

We next solve the inhomogeneous problem in Algorithm 8. A distinctive feature of

compact schemes is that the right-hand side of the difference equation gets trans-

formed, see (1.8), we denote this transformation as B(F ). However the transforma-
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tion of the source term requires F to be defined not only on Ωq where it is originally

defined in the analytical problem, but also on γ. Therefore, we continue F from Ωq

to Ωq ∪ γ using the Taylor extension T (F ).

Algorithm 8 The Solver for an inhomogeneous problem

function Inhomogeneous-SolverΩq
(N,k,bc type,bc)

(ξIγ , QI , ξ
II
γ , QII)← BEPq(N, k)

ξFγ ← Ex(0, 0, F ) . calculate inhomogeneous part of Ex only once

PF ← P qγ (N, k, ξFγ ) . which give another AP to solve

5: QF ← PF − ξFγ
GF = S(N, k,B(T (F )))
(cI , cII)← Coefficients(QI , QII , bc type, bc,QF +GF |γ)
u← 0 on grid N
u|Ωq

← Sq(N, k, ξIγcI + ξIIγ c
II + ξFγ )|Ωq

10: return u+GF
end function

We finally solve the transmission-reflection problem driven by the incident wave

u(inc) in Algorithm 9. The media of the interior part can be heterogeneous. The

exterior problem is considered in the far field and therefore the media is homoge-

neous. However, a jump is allowed at the interface between the interior and exterior

problem. The solution to the exterior problem is considered as a sum of the scattered

and incident field.

A clear advantage of our method is that scattering about a given shape but

for multiple angles of incidence, and even for different boundary conditions, can

be computed very efficiently. This is particularly important if the direct scattering

problem needs to be solved many times while using an iterative method to solve an

inverse scattering problem.
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Algorithm 9 The Solver for Transmission-Reflection problem

function Transmission-Reflection-Solver(N,k0,k1,bc type,u(inc))
(ξ1,I
γ , Q1,I , ξ

1,II
γ , Q1,II)← BEP1(N1, k1) . Interior

(ξ0,I
γ , Q0,I , ξ

0,II
γ , Q0,II)← BEP0(N0, k0) . Exterior

ξ1
γ ←

(
ξ1,I
γ , ξ1,II

γ

)T
ξ0
γ ←

(
ξ0,I
γ , ξ0,II

γ

)T
6: ξ1,F

γ ← Ex(0, 0, F )

Q1,F ← P 1
γ (N1, k1, ξ

1,F
γ )− ξ1,F

γ

Q0,(inc) ← P 0
γ (N0, k0, u

(inc)|γ)− u(inc)|γ
GF1 = S1(N1, k1,B(T (F )))

c = QR

((
Q0,I , Q0,II

Q1,I , Q1,II

)
,

(
−Q0,(inc)

−GF1|γ −Q1,F

))
u← 0 on entire grid N0 ∪ N1

12: u|Ω0 ← S0(N0, k0, ξ
0
γc)|Ω0 + u(inc)|Ω0

u|Ω1
← S1(N1, k1, ξ

1
γc+ ξ1,F

γ )|Ω1
+GF1

return u
end function

Consider a set of incident waves u(inc)(θm), The naive algorithm uses Algorithm

9 m times.

Algorithm 10 Inefficient Solver for Transmission-Reflection problem with multiple
incident angles

function Transmission-Reflection-Solver-MA(N,k0,k1,bc type,u(inc),θ)
foreach Incident Angle θm

Um ← Transmission−Reflection− Solver(N, k, bc type, u(inc)
m )

end foreach
return U

6: end function

However, it can be done much more efficiently, since the call to the most time

expensive function BEP does not depend on the impinging wave and therefore can

be called once per problem (Interior, Exterior) regardless of the number of incident

angles used:
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Algorithm 11 Efficient Solver for Transmission-Reflection problem with multiple
incident angles

function Transmission-Reflection-Solver-MA(N,k0,k1,bc type,u(inc),θ)
(ξ1,I
γ , Q1,I , ξ

1,II
γ , Q1,II)← BEP1(N1, k1) . Interior

(ξ0,I
γ , Q0,I , ξ

0,II
γ , Q0,II)← BEP0(N0, k0) . Exterior

ξ1
γ ←

(
ξ1,I
γ , ξ1,II

γ

)T
ξ0
γ ←

(
ξ0,I
γ , ξ0,II

γ

)T
6: ξ1,F

γ ← Ex(0, 0, F )

Q1,F ← P 1
γ (N1, k1, ξ

1,F
γ )− ξ1,F

γ

GF1 = S1(N1, k1,B(T (F )))
foreach Incident Angle θm

Q0,(inc) ← P 0
γ (N0, k0, u

(inc)
m |γ)− u(inc)

m |γ

c = QR

((
Q0,I , Q0,II

Q1,I , Q1,II

)
,

(
−Q0,(inc)

−GF1|γ −Q1,F

))
12: u← 0 on entire grid N0 ∪ N1

u|Ω0
← S0(N0, k0, ξ

0
γc)|Ω0

+ u
(inc)
m |Ω0

u|Ω1
← S1(N1, k1, ξ

1
γc+ ξ1,F

γ )|Ω1
+GF1

Um ← u
end foreach
return U

18: end function

2.3.2 Cartesian Coordinates: Homogeneous Dirichlet Problem in

a Circle

Consider the Dirichlet problem (2.29) in a circular domain Ω1 = {(x, y)|
√
x2 + y2 <

R} solved on a Cartesian grid, where the boundary is not aligned to the grid.


∆u+ k2u = 0 x2 + y2 < R2,

u(x, y) = g(x, y) x2 + y2 = R2.

(2.29)

We introduce a finite-difference approximation to this problem. Let N be the

Cartesian grid on the (−xt, xt)×(−yt, yt), where xt = yt > R and let pi,j = (xi, yj) ∈
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N be the nodes of the grid with |pi,j | =
√
x2
i + y2

j . Denote M = {pi,j : |pi,j | < R}.

Figure 2.5: Circular body in Cartesian coordinates with γ defined in (2.23).

To solve problem (2.29) with higher order accuracy we first define the grid coun-

terpart of original boundary shape Γ whose fragment and approximation are shown

in Figure 2.5 as

γ = N+ ∩ N−, (2.30)

where Npi,j is the 9-point stencil centered at node pi,j , see Figure 2.2. N+,N− are

non-empty sets defined as

N+ =
⋃

pi,j∈M
Npi,j , N− =

⋃
pi,j∈N\M

Npi,j .



2.3. DISCRETE CALDERON’S POTENTIALS 71

2.3.2.1 Equation Based Extension

The set γ introduced by formula (2.23) will be used to define the density ξξξγ of a

difference potential. In turn, ξξξγ will be obtained from ξξξΓ by means of the Equation-

Based Taylor extension as explained in Section 2.3.1.2. We present an example

of a 5th order Equation-Based Taylor extension (2.31). Since the boundary shape

is a circle it is convenient to rewrite the boundary condition as u(R, θ) = g(θ).

Although we solve the homogeneous problem, the extension is for a more general

inhomogeneous case of an equation based extension.

u (R+ δr, θ) = u(R, θ) + δrur +
δr2

2
urr +

δr3

6
urrr +

δr4

24
urrrr. (2.31)

We use Helmholtz equation in polar coordinates

urr +
1

r
ur +

1

r2
uθθ + k2(r, θ)u = F (r, θ) (2.32)

and solve (2.32) for the second radial derivative

urr = F − 1

r
ur −

1

r2
uθθ − k2u.

We differentiate it twice, for the third derivative

urrr = Fr +
1

r2
ur −

1

r
urr +

2

r3
uθθ −

1

r2
urθθ − k2ur − 2kkru,
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and the fourth derivative

urrrr = Frr +

(
2

r2
urr −

1

r
urrr −

2

r3
ur

)
+

(
− 6

r4
uθθ +

4

r3
urθθ −

1

r2
urrθθ

)
− k2urr − 4kkrur − 2k2

ru− 2kkrru

= Frr − 2
(
k2
r + kkrr

)
u− 2

(
1

r3
+ 2kkr

)
ur +

(
2

r2
− k2

)
urr

− 1

r
urrr −

6

r4
uθθ +

4

r3
urθθ −

1

r2
uθθrr.

The mixed derivative uθθrr is obtained using the angular derivative of the equa-

tion:

uθθrr = Fθθ −
1

r
urθθ −

1

r2
uθθθθ − k2uθθ.

Finally,we define

T Ri,jTru = T (u, ur, F, |pi,j | −R), pi,j ∈ γ,

where T denotes the Taylor extension (2.31).

2.3.2.2 Auxiliary Problem

Consider the following auxiliary problem


Lpi,jvpi,j = fpi,j pi,j ∈ N \ ∂N,

lpi,jvpi,j = 0 pi,j ∈ ∂N,
(2.33)
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where the boundary condition lpi,jvpi,j = 0 in (2.33) can be arbitrary as long as it

guarantees the existence and uniqueness of the solution for any right-hand side fpi,j ,

and well-posedness of the entire formulation. In practice, the AP is also chosen so

that it admits an easy numerical solution. For example, one can use an absorbing-

type boundary condition in (2.33):

lpi,jvpi,j =


(vx)pi,j = ikvpi,j xi,j ∈ {−xt, xt},

vpi,j = 0 yi,j ∈ {−yt, yt}.
(2.34)

The AP (2.33) is used to compute the difference potential with the density ξξξγ

defined on the grid boundary γ. For a given ξξξγ , we first introduce the auxiliary

function

wpi,j =


ξξξγ |pi,j pi,j ∈ γ,

0 elsewhere,

(2.35)

so that Trwpi,j = ξξξγ . Then we define the right-hand side for the AP as follows

fpi,j =


Lpi,jwpi,j pi,j ∈M,

0 elsewhere.

(2.36)

2.3.2.3 Reduction To The Boundary

Denote by vpi,j the solution to the auxiliary problem (2.33) with the right-hand side

given by (2.36). The difference potential with the density ξξξγ is defined for the grid
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nodes pi,j ∈ N+ according to the following formula:

Pqξξξγ = wpi,j − vpi,j , (2.37)

where wpi,j is given by (2.35). The difference potential (2.37) converges to the

continuous potential (2.16) with the design rate as the grid size decreases, see [48, 47]

and also [42].

We next assume the Fourier expansions, i.e. bn(θ) = einθ, see Section 2.3.1.2:

u(R, θ) =

M∑
n=−M

û[n]einθ (2.38a)

and

ur(R, θ) =
M∑

n=−M
ûr[n]einθ. (2.38b)

When we solve the Dirichlet problem the coefficients û[n] are known while ûr[n]

are unknowns. We next define two sets of the source term via ξγ :

ξIγ(n) = T Ri,j(einθ, 0) = T (einθ, 0, 0, δΓ), n ∈ [−M,M ]

and another for

ξIIγ (n) = T Ri,j(0, einθ) = T (0, einθ, 0, δΓ), n ∈ [−M,M ],

where δΓ represents the shortest distance between pi,j ∈ γ and the analytical shape

Γ, i.e. in this instance δΓ = |pi,j | −R.
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We next introduce the discrete projection

Pγξξξγ = Pqξξξγ
∣∣
γ

and the difference counterpart of BEP (2.9):

Pγξξξγ = ξξξγ (2.39)

or equivalently

(wpi,j − vpi,j )|γ = wpi,j |γ .

We rewrite the BEP (2.39) as

Pγξξξγ − ξξξγ = 0,

and define

Qqξξξγ = (Pq − I)ξξξγ = (wpi,j − vpi,j )|γ − wpi,j |γ = −vpi,j |γ . (2.40)

We next use (2.26) to recast (2.40) as

Qqξξξγ = Qqξ
I
γ + Qqξ

II
γ ,

where

Qqξ
m
γ =

∑
cm,qn Qqξ

m
γ,q(n),
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see (2.25). We next combine Qqξ
I
γ(n) and Qqξ

II
γ (n) in a matrix:

Q = [QI |QII ] =


| | | |

Qqξ
I
γ(−M) · · · Qqξ

I
γ(M) Qqξ

II
γ (−M) · · · Qqξ

II
γ (M)

| | | |

 .

(2.41)

The size of the matrix Q is |γ| × 2(2M + 1), where |γ| denotes number of nodes of

grid in γ, which also the size of Qqξ
m
γ (n) and ξmγ (n). Thus, we are looking for a

non-zero vector

c = [û[−M ], . . . , û[M ], ûr[−M ], . . . , ûr[M ]]T (2.42)

that satisfies

Qc = 0. (2.43)

2.3.2.4 The Solution

Equation (2.43) has multiple solutions since we did not yet use the boundary con-

dition, which we do now. The problem (2.29) is a Dirichlet problem and therefore

the 2M + 1 coefficients of (2.38a) are easy to calculate by Fourier transforming the

data g(θ). One then denotes

cI = [û[−M ], . . . , û[M ]]T , (2.44)

cII = [ûr[−M ], . . . , ûr[M ]]T . (2.45)
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and rewrite (2.43) as a system of equations with respect to cII

QIIc
II = −QIc

I . (2.46)

For a sufficiently fine grid, system (2.46) is overdetermined, and its solution

is to be sought for in the sense of the least squares. However, as the solution to

the original continuous problem exists, and system (2.46) equivalently represents its

fourth order accurate finite difference approximation, the residual of its least squares

solution is expected to vanish with the rate O(h4) as the grid is refined. In this sense,

the overdetermined system (2.46) can be said to have an “almost classical” solution.

To obtain the solution to problem (2.29) one again solves the auxiliary problem

(2.33). Thus, the approximation is given by u = Pq ξγ where

ξγ =
∑
n

û[n]ξIγ(n) +
∑
n

ûr[n]ξIIγ (n)

where now all the coefficients are known.

2.3.3 Cartesian Coordinates: Homogeneous Neumann Problem in

a Circle

Consider the Neumann problem:


∆u+ k2u = 0 x2 + y2 < R2,

ur(x, y) = g(x, y) x2 + y2 = R2.

(2.47)
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The solution to the problem (2.47) is similar to the solution of (2.29). The main

difference is that unlike in (2.29) where first 2M + 1 elements of c are known in

Neumann problem the second 2M + 1 elements of c are known and the first 2M + 1

elements are unknown. Thus, to solve the Neumann problem one exchanges between

the right hand side and left hand side of (2.46), i.e.

QIc
I = −QIIc

II (2.48)

and the rest of the procedure remains unchanged. Therefore, one computes un-

known coefficients using (2.48) and approximates the solution to problem (2.47) by

computing

ξγ =
∑
n

û[n]ξIγ(n) +
∑
n

ûr[n]ξIIγ (n)

and then solving an auxiliary problem (2.33) for u = Pq ξγ .

2.3.4 Cartesian Coordinates: Homogeneous Robin Problem in a

Circle

We next consider the Robin problem:


∆u+ k2u = 0 x2 + y2 < R2,

αu(x, y) + βur(x, y) = g(x, y) x2 + y2 = R2,

(2.49)

where α2 +β2 6= 0. One uses the orthogonality of the basis in the expansions (2.38)

to rewrite the boundary condition as αû[n] + βûr[n] = ĝ[n], ∀n ∈ [−M,M ]. Hence,
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one solves the following system of equations

αcI + βcII = ĝ, (2.50)

QIc
I + QIIc

II = 0. (2.51)

One solves (2.50) to find cII

cII =
1

β
ĝ − α

β
cI (2.52)

and then uses it in (2.51) to obtain

QIc
I + QII(

1

β
ĝ − α

β
cI) = 0

and hence one solves

(QI −
α

β
QII)c

I = − 1

β
QII ĝ (2.53)

to find cI and substitute it in (2.52) to obtain cII .

Alternatively, one solves

(QII −
β

α
QI)c

II = − 1

α
QI ĝ

to compute cII , and then substitute it in cI = 1
α ĝ −

β
αc

II .

Once the coefficients cI , cII are known, one then computes

ξγ =
∑
n

û[n]ξIγ(n) +
∑
n

ûr[n]ξIIγ (n)

to approximate the solution to the problem (2.49) by solving an auxiliary problem
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(2.33) for u = Pq ξγ .

2.3.5 Cartesian Coordinates: Inhomogeneous Equation in an El-

lipse

We next present the inhomogeneous Dirichlet problem (2.54) for an elliptical body

to be solved on a Cartesian grid, see Figure 2.6.


∆u+ k2u = F (x, y) x2

a2
+ y2

b2
< 1,

u(x, y) = g(x, y) x2

a2
+ y2

b2
= 1,

(2.54)

where a = d cosh η0, b = d sinh η0 are the major and minor semiaxes of the ellipse

respectively, d =
√
a2 − b2 is the focal distance and η0 is the elliptical radial coordi-

nate. One reexpresses (2.54) using

η(x, y) = Re

(
arcosh

x+ iy

d

)

as 
∆u+ k2u = F (x, y) η(x, y) < η0,

u(x, y) = g(x, y) η(x, y) = η0.

(2.55)

The finite-difference approximation to this problem is given by an auxiliary prob-

lem (2.33). The grid N is the Cartesian grid on (−xt, xt) × (−yt, yt), see Figure

2.6 and pi,j = (xi, yj) ∈ N is the node of the grid. Instead of |pi,j | we define

ηi,j ≡ η(pi,j) = η(xi, yj) and denote M = {pi,j : ηi,j < η0}. The definition of γ

remains unchanged.
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Figure 2.6: Example of discrete auxiliary problem: elliptical body in Cartesian coordinates.

Obviously, since the boundary is not aligned to the grid one needs to develop an

Equation Based Taylor extension for the new curve. The general case is explained in

[42]. Here we limit our discussion to the Helmholtz equation in elliptical coordinates

1

h2(η, ϕ)
(uηη + uϕϕ) + k2(η, ϕ)u = F (η, ϕ), (2.56)

where h(η, ϕ) = d
√

sinh2 η + sin2 ϕ is the scale factor.

We first solve (2.56) for uηη to get

uηη = h2F − uϕϕ − h2k2u

then we differentiate it to get the third derivative

uηηη = 2hhηF + h2Fη − uηϕϕ − 2
(
hhηk

2 + h2kkη
)
u− h2k2uη
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and the fourth derivative

uηηηη = 2
(
h2
η + hhηη

)
F + 4hhηFη + h2Fηη − uηηϕϕ

− 2
((
h2
η + hhηη

)
k2 + 4hkhηkη + h2kkηη + h2k2

η

)
u

− 4
(
hhηk

2 + h2kkη
)
uη − h2k2uηη

and similarly

uηηϕϕ = 2
(
h2
ϕ + hhϕϕ

)
F + 4hhϕFϕ + h2Fϕϕ − uϕϕϕϕ

− 2
((
h2
ϕ + hhϕϕ

)
k2 + 4hkhϕkϕ + h2kkϕϕ + h2k2

ϕ

)
u

− 4
(
hhϕk

2 + h2kkϕ
)
uϕ − h2k2uϕϕ

We next use these derivatives in

u (η + h, ϕ) = u (η, ϕ) + huη +
h2

2
uηη +

h3

6
uηηη +

h4

24
uηηηη (2.57)

and define

T η0i,j Tru = T (u, uη, F, ηi,j − η0), pi,j ∈ γ, (2.58)

where T denotes Taylor extension (2.57).

We next assume the Fourier expansions

u(η0, ϕ) =
M∑

n=−M
û[n]einϕ (2.59a)
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and

uη(η0, ϕ) =

M∑
n=−M

ûη[n]einϕ (2.59b)

and define the sets of ξmγ (n). In order to reduce the computational cost instead of

two sets

ξIγ(n) = T (einx, 0, F, δΓ), n ∈ [−M,M ]

and

ξIIγ (n) = T (0, einx, F, δΓ), n ∈ [−M,M ],

where δΓ = ηi,j − η0 is the shortest distance from pi,j ∈ γ to Γ. One solves these

two sets without the source term i.e.

ξIγ(n) = T (einx, 0, 0, δΓ), n ∈ [−M,M ]

and

ξIIγ (n) = T (0, einx, 0, δΓ), n ∈ [−M,M ]

and defines an additional AP for the source term F . This is done so we need to

compute it’s part of the extension only once

ξFγ = T (0, 0, F, δΓ), n ∈ [−M,M ].

This adds another column to the matrix Q in equation (2.43), Qqξ
F
γ = (Pq − I)ξFγ .

More precisely there is another change to (2.43), i.e. it’s become inhomogeneous:

Qc = −GF |γ , (2.60)
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where GF is the solution of AP (2.33) with

fpi,j =


B T̃ Fpi,j pi,j ∈M ∪ γ,

0 elsewhere,

(2.61)

where the operator B represents the right hand side stencil of the compact scheme,

see Section 1.2.1, particularly the right hand side of (1.8). Note that B requires F

to be defined for pi,j for which ηi,j ≥ η0 where F is not necessary known. Therefore,

one extends the source term F to these nodes using regular (non equation based)

Taylor extension which we denote T̃ . See also [42].

Thus, the equation (2.46) becomes

QII ûη[n] = −QI û[n]−QqξFγ −GF |γ . (2.62)

To obtain the solution to problem (2.55) one computes the coefficients from

(2.62) and then solves the auxiliary problem Pq ξγ using

ξγ =
∑
n

û[n]ξIγ(n) +
∑
n

ûη[n]ξIIγ (n) +Qqξ
F
γ .

Finally u = Pq ξγ +GF .
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2.3.6 Polar Coordinates: Scattering about an Ellipse

Consider the scattering problem in polar coordinates about an elliptical body


usrr + 1

ru
s
r + 1

r2
usθθ + k2us = 0 η(R, θ) > η0,

us(R, θ) = g(θ) η(R, θ) = η0,

lim
r→∞

r
1
2 (usr + ikus) = 0.

(2.63)

where us denotes a scattering field, g(θ) = −u(inc)(θ) = e−ik(x cos θ+y sin θ) is an

incident wave, η0 is the elliptical radial coordinate and

η(r, θ) = Re

(
arcosh

reiθ

d

)
,

and d is the semi-focal distance, see Figure 1.2.

Since on a computer one can’t solve the problem in an infinite domain one trun-

cates the infinite domain and defines an artificial boundary. It is convenient to choose

the artificial boundary to be aligned to the the grid, therefore, the numerical domain

becomes a ring, Figure 2.7. The Sommerfeld condition lim
r→∞

r
1
2 (usr + ikus) = 0 is

changed to an Absorbing Boundary Condition (ABC) which uses the decomposition

of the waves into incoming and outgoing and allows the propagation of only the

outgoing waves. Such an approach resembles the idea of Sommerfeld condition of

“no wave radiating from infinity” by “no wave is entering the computational do-

main” or more precisely no wave is reflecting from the artificial boundary. This is a

commonly used approach [64, 29], and is valid since we are considering only regular

bounded solutions, which eliminates the possible ambiguity in the definition of the
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Figure 2.7: Example of discrete auxiliary problems: elliptical body in polar coordinates.

incoming and outgoing waves pointed out in [17].

Occasionally, for an elliptical or oval like scatterer one wishes that the outer

artificial surface resemble the scatterer to prevent unnecessary interior nodes. One

then uses an ABC in elliptical coordinates (see [44, 43, 41]). However, we set the

artificial boundary on an outer circle of the grid. We Fourier transform the auxiliary

problem (2.33) to get a linearly solved tridiagonal linear system [15], see algorithm

described in [8]. Therefore, in this instance we neglect the problem of redundant

nodes.

The AP (2.33), transformed to the Fourier space, has the advantage that the
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ABC becomes an exact condition instead of an approximation of the Sommerfeld

condition [8]. The boundary condition on the inner circle may be chosen arbitrarily

since unlike the ABC it belongs to the AP but not to the original problem. One de-

fines a homogeneous boundary condition on the inner circle. By this we accomplish

the new definition of lpi,j in (2.33).

One then uses an Equation Based Taylor extension T η0i,j defined in (2.58) (see

[42] for more general case) and assumes the Fourier expansion of the solution on an

interface Γ as given in equations (2.59a) and (2.59b). Next, one solves the AP for

ξIγ(n) = T (einx, 0, 0, δΓ), n ∈ [−M,M ]

and

ξIIγ (n) = T (0, einx, 0, δΓ), n ∈ [−M,M ],

where δΓ = ηi,j − η0 is the shortest distance from pi,j ∈ γ to Γ.

Finally, one defines the matrix Q and using (2.40), one solves

QII ûsη[n] = −QI ûs[n], (2.64)

where ûs = −û(inc) and computes

ξγ =
∑
n

ûs[n]ξIγ(n) +
∑
n

ûsη[n]ξIIγ (n)

to approximate the solution to problem (2.63) as us = Pq ξγ or the total field as

u = us + u(inc) = Pq ξγ + u(inc).
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2.3.7 Transmission–Reflection problem

Consider the problem (1.2) described also in Figure 1.1. For convenience we redefine

it as 
∆u+ k2

0u = 0 x ∈ Ω0,

∆u+ k1(x )2u = F (x ) x ∈ Ω1.

(2.65)

Figure 2.8: Interior and Exterior subproblems

In this instance we consider that Γ is an ellipse and therefore the auxiliary

problems that solve system of BEPs (2.17) becomes the problems (2.54) and (2.63).

When these problems are solved the information about the boundary function of

these problems, g, are used at a very late stage. More precisely the matrices Q in

both problems are computed without any knowledge about g and this fact is a key

property.

Thus, one defines four sets of ξγ , two sets ξIγ,0(n), ξIIγ,0(n) for the exterior and two
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sets ξIγ,1(n), ξIIγ,1(n) for the interior subproblem, i.e. assume an expansion (2.59a),

(2.59b) and obtain a matrix Q .

Let Q1 be the matrix Q of the interior subproblem (2.54) for which the BEP is

given by

Q1c = −Q1ξ
F
γ −G1

F |γ

and let Q0 be the matrix Q of the interior subproblem (2.63) with it’s BEP

Q0c = Q0ξ
(inc)
γ .

When problems (2.54) and (2.63) are solved half of the vector of coefficients c are

known from the boundary condition and the other half are solved. In this instance

c is fully unknown, and instead one solves

 Q1

Q0

 c =

 −Q1ξ
F
γ −G1

F |γ

Q0ξ
(inc)
γ

 , (2.66)

which is again overdetermined for a fine enough grid and it’s solution exists again

as long as solution to original problem does. Hence (2.66) is understood in the least

square sense.

To approximate the solution to problem (2.65) one computes

ξ1
γ =

∑
n

û[n]ξIγ(n) +
∑
n

ûη[n]ξIIγ (n) +Q1ξ
F
γ .
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and

ξ̃0
γ =

∑
n

ûs[n]ξIγ(n) +
∑
n

ûsη[n]ξIIγ (n)

and solves

u =


P1 ξ

1
γ +G1

F x ∈ Ω1,

P0 [ξ̃0
γ − ξ

(inc)
γ ] + u(inc) x ∈ Ω0.

2.4 Complexity

The key contribution to the overall complexity of the proposed algorithm is the

repeated solution of the discrete AP (2.33). Each subproblem of the transmission

reflection problem needs to be solved (2M +1) times to find the coefficients and one

more to obtain the solution when coefficients are known. Altogether, it needs to be

solved 4(M + 1) times. However, only the right-hand side of the AP changes from

time to time, whereas the two operators remain the same.

In the case of constant coefficients, each of the 4(M+1) equations requires a FFT

solve which has a log-linear complexity with respect to |N|, the dimension of the

problem, i.e. the number of nodes of the grid N. In the case of variable coefficients,

the overall complexity will be that of a single sparse LU decomposition of a matrix

of dimension |N| × |N| plus 4(M + 1) backward substitutions. This is, of course,

significantly faster than solving the overall system many times.

In the case of variable coefficients, one can use an iterative solver, for example

see [65]. In 3D, a straightforward Gaussian elimination (LU decomposition) is not

feasible. For constant coefficients, a Fourier based solver that does not require
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storing the matrix and has a log-linear complexity will provide the most efficient

approach to solution, if, of course, the AP can be formulated so that it will admit

the solution by FFT. Otherwise, an iterative solve will become a necessity in 3D

for either variable or constant coefficients. For example, using the iterative scheme

Risolv of [61], one needs to find the optimal parameters of the algorithm only once

independent of the RHS. Let Nnz be the number of non-zero entries in the system

matrix that has the dimension |N|×|N|, NK be the dimension of the Krylov subspace,

and NA be the number of times we apply the Arnoldi algorithm. Then the total

amount of work for the first solve, i.e., for one RHS, is approximatelyNA×NK×Nnz+

NA× 1
2N

2
K×|N|. For each subsequent solve the total work is approximatelyNA×NK×

Nnz. Hence, it no longer depends on N2
K|N|, which means that the dependence on the

dimension |N| of the system matrix disappears, and the dependence on the dimension

NK of the Krylov subspace becomes linear rather than quadratic. Regarding the

preconditioning of the Helmholtz equation, see, e.g. [21, 19, 18, 20].

Another contribution to the overall complexity is the QR decomposition. If the

modified Gram-Schmidt algorithm is used, then the corresponding cost is about

2(2M+1)2|γ| operations, where for the current two-dimensional setting |γ| ∼
√
|N|.

The cost of all other components of the algorithm, see Section 2.3.1, is negligible.

We re-emphasize that as the discretization grid is refined, only the quantities

|N| and |γ| increase, whereas M stays the same. This is the strategy we have

adopted for all our numerical simulations, see Chapter 3. Of course, choosing M

grid-independent represents the most conservative scenario. It allows us to make

sure that the accuracy of the spectral representation at the boundary (in the basis

of dimension M) will certainly exceed any accuracy that one may possibly obtain
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on the grid. In fact, M does not always have to be chosen this way. For coarser

grids it can be smaller, which will yield additional savings, see [10, Section 4.5].



Chapter 3

Results

3.1 Interior problems on a Cartesian grid

3.1.1 Schemes of various accuracy

We first solve the interior Dirichlet problem for the constant coefficient homogeneous

Helmholtz equation:

∆u+ k2u = 0 on Ω,

u
∣∣
Γ

= φ,

(3.1)

on the domain Ω which is a disk of radius R = 3 centered at the origin. The auxiliary

problem (2.33) is formulated on a larger square Ω̃ = (−π, π)× (−π, π) and consists

of solving the inhomogeneous Helmholtz equation

∆v + k2v = g

93
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subject to the zero Dirichlet boundary condition v
∣∣
∂Ω̃

= 0. To avoid resonances and

guarantee uniqueness of the solution to the AP, we require that k2 6= l2 +m2, where

l and m are any two integers. The AP is solved by a sparse LU decomposition.

We take the test solution of problem (3.1) in the form of a plane wave:

u(x, y) = ei(kxx+kyy), where k2
x + k2

y = k2, (3.2)

so that the boundary data in (3.1) become

φ(θ) = eiR(kx cos θ+ky sin θ), (3.3)

where θ is the polar angle. The specific values that we choose are: kx = 4
5k and

ky = 3
5k and k to be chosen later. We note that in further discussion we use the

notation of k rather than non-dimensional kD where D is a radius R or the major

elliptical semi-axis a since the size shape is fixed.

To discretize the Helmholtz equation, we use a uniform, in both directions,

Cartesian grid with size h on the square Ω̃ (the domain of the AP). In doing so, the

circular boundary Γ of the domain Ω, i.e., the domain of the original problem (3.1),

does not conform to the grid. The Helmholtz equation is discretized by means of

the following three schemes:

1. The standard central difference second order accurate scheme on the five-node

stencil;

2. The fourth order accurate compact scheme of Section 1.2.1, which uses the

nine-node stencil shown in Figure 2.2 [the equation in (3.1) is homogeneous,
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and no stencil is needed for the right-hand side]. For the case of k=const, the

scheme simplifies compared to formula (1.8);

3. The sixth order accurate compact scheme of [56], which uses the same nine-

node stencil.

The goals of the computations are to demonstrate the design order of the grid

convergence of the numerical solution to the exact solution for a non-conforming

boundary. We also determine what is the minimum number of Taylor derivatives

needed to maintain the required order of accuracy of the overall scheme; see discus-

sion before formula (2.31) or [42]. An additional goal is to show how the pollution

effect [35, 5, 2] manifests itself.

The grid convergence is studied by solving on a sequence of grids of increasing

dimension: 2d × 2d, from 16 × 16 to the maximum of 1024 × 1024. So for a given

d the grid size is h= 2π
2d

=π21−d, and it is halved every time the grid dimension is

increased.

We have solved problem (3.1) for five different values of the wavenumber k: 1,

3, 6.7, 12.8, and 25.6. For the highest k that we have considered, the test solution

(3.2) already exhibits a fair amount of oscillations on the domain Ω — about 25 full

wavelengths along the radius, as shown in Figure 3.1. The results of computations

for all k’s are presented in Table 3.1 through Table 3.5.

Altogether, Tables 3.1 – 3.5 show that for every scheme we have tested, the

proposed methodology guarantees the design rate of grid convergence for a non-

conforming boundary and a Cartesian grid.
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(a) Real Part

(b) Imaginary Part

Figure 3.1: Real and Imaginary part of the test solution (3.2) for k = 25.6.
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Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u− unum‖∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 3.474855e-2 — 4.590536e-4 — 3.626766e-6 —
32× 32 5.346252e-3 2.7004 5.163260e-6 6.4742 8.250530e-9 8.7800
64× 64 1.238241e-3 2.1102 1.704410e-7 4.9209 6.486869e-11 6.9908
128× 128 3.001289e-4 2.0446 9.090205e-9 4.2288 1.112940e-12 5.8651
256× 256 7.389904e-5 2.0220 3.272063e-10 4.7960 2.343009e-12 -1.0740
512× 512 1.835138e-5 2.0097 2.457055e-11 3.7352 7.287204e-12 -1.6370
1024× 1024 4.571995e-6 2.0050 3.070920e-11 -0.3217 2.411052e-11 -1.7262

Table 3.1: Grid convergence for the wavenumber k = 1 and the dimension of the basis
(2.38) M = 17. Note that the apparent breakdown of convergence of higher order schemes
on finer grids is due to the loss of significant digits, as the absolute levels of the error become
very small and approach machine zero.

Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u− unum‖∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 2.157031 — 1.093211 — 6.252035e-2 —
32× 32 2.212195e-1 3.2855 1.491703e-3 9.5174 1.905533e-5 11.6799
64× 64 6.296501e-2 1.8129 4.695925e-5 4.9894 2.743013e-7 6.1183
128× 128 1.621645e-2 1.9571 2.736886e-6 4.1008 3.956555e-9 6.1154
256× 256 4.049416e-3 2.0017 1.612331e-7 4.0853 5.830238e-11 6.0845
512× 512 1.008930e-3 2.0049 9.823236e-9 4.0368 1.288003e-12 5.5003
1024× 1024 2.515190e-4 2.0041 6.235303e-10 3.9777 7.870095e-12 -2.6112

Table 3.2: Grid convergence for the wavenumber k = 3 and the dimension of the basis
(2.38) M=28.

The dimension M of the basis (2.38) is chosen by Fourier transforming the

boundary data (3.3) of problem (3.1) and truncating the series at the machine

precision level (double precision). The resulting values of M for every k are

provided in the captions to Tables 3.1 – 3.5. We see that M increases as k increases.

This is not surprising, as the solution becomes more oscillatory;1 for example, our

highest k = 25.6 corresponds to over 75 full wavelengths along the circumference

1Convergence of the Fourier series remains exponential due to the smoothness, but the constants
become larger.
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Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u− unum‖∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 8.228113 — 7.976387 — 1.459757e+1 —
32× 32 4.299483 0.9364 1.001469e-1 6.3155 1.071898e-2 10.4113
64× 64 1.933134 1.1532 4.111705e-3 4.6062 1.345917e-4 6.3154
128× 128 3.065574e-2 2.6567 2.420283e-4 4.0865 1.845635e-6 6.1883
256× 256 7.028536e-3 2.1249 1.488596e-5 4.0232 2.757929e-8 6.0644
512× 512 1.861682e-3 1.9166 9.101549e-7 4.0317 4.192718e-10 6.0396
1024× 1024 4.726287e-4 1.9778 5.640010e-8 4.0123 1.170244e-11 5.1630

Table 3.3: Grid convergence for the wavenumber k= 6.7 and the dimension of the basis
(2.38) M=43.

Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u− unum‖∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 3.135403e+1 — 7.284196e+1 — 9.174488e+1 —
32× 32 2.693366e+1 0.2192 4.960223 3.8763 1.344958e+1 2.7701
64× 64 8.177246 0.2192 1.233802 2.0073 8.032610e-2 7.3875
128× 128 1.095035e+1 -0.4213 3.200884e-2 5.2685 1.039313e-3 6.2722
256× 256 2.603452 2.0725 2.048553e-3 3.9658 1.395774e-5 6.2184
512× 512 6.781712e-1 1.9407 1.277844e-4 4.0028 2.125559e-7 6.0371
1024× 1024 1.448771e-1 2.2268 7.718401e-6 4.0493 3.172309e-9 6.0662

Table 3.4: Grid convergence for the wavenumber k= 12.8 and the dimension of the basis
(2.38) M=66.

R= 3. On the other hand, we also see in Tables 3.1 through 3.5 that the accuracy

actually achieved on the grid is often orders of magnitude less than the machine

precision. This indicates that the chosen M may be superfluous, and the same

accuracy of the solution can be obtained using a smaller basis (2.38) at a lower

computational cost. For example, the fourth and sixth order computations presented

in Table 3.5 (k = 25.6) were repeated for various values of M with similar results.

From Tables 3.6 and 3.7 one learns that for the finest grids the higher accuracy

reached with the large value of M degrades when the value of M decreased more
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then 20 percent. This result is not surprising since Fourier series were cut at 10−2

and 10−3 for M = 90 and M = 85 respectively.

Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u− unum‖∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 1.144291e+2 — 2.065713e+3 — 1.175546e+4 —
32× 32 4.851901e+1 1.2378 8.885777e+1 4.5390 4.453015e+1 8.0443
64× 64 1.280298e+1 1.9221 2.818431 4.9785 1.219721e+1 1.8682
128× 128 1.901798e+1 -0.5709 4.128656e-1 2.7711 1.039313e-3 5.5781
256× 256 1.448009e+1 0.3933 1.737760e-1 1.2484 1.973019e-3 7.0158
512× 512 4.563927 1.6657 4.317500e-3 5.3309 2.883989e-5 6.0962
1024× 1024 3.892365 0.2296 2.603055e-4 4.0519 4.398634e-7 6.0349

Table 3.5: Grid convergence for the wavenumber k= 25.6 and the dimension of the basis
(2.38) M=111.

Grid M

111 100 90 85

||u− unum||∞ ||u− unum||∞ ||u− unum||∞ ||u− unum||∞
16× 16 2.065713e+3 2.253702e+3 2.222923e+3 2.222930e+3
32× 32 8.885777e+1 6.484520e+1 6.827580e+1 5.631450e+1
64× 64 2.818431 2.813891 2.503964 2.192968e+0
128× 128 4.128656e-1 4.070042e-1 4.048406e-1 4.057072e-1
256× 256 1.737760e-1 1.735016e-1 1.733309e-1 1.734153e-1
512× 512 4.317500e-3 4.317889e-3 4.317991e-3 1.220778e-2
1024× 1024 2.603055e-4 2.603074e-4 5.893227e-4 1.066776e-2

Table 3.6: Behavior of the schemes for various dimensions of the basis (2.38) M – 4th
order compact scheme. The wavenumber is k=25.6.

Grid M

111 100 90 85

||u− unum||∞ ||u− unum||∞ ||u− unum||∞ ||u− unum||∞
16× 16 1.175546e+4 1.352850e+4 1.276175e+4 1.237621e+4
32× 32 4.453015e+1 4.953919e+1 4.407588e+1 4.927018e+1
64× 64 1.219721e+1 7.862976 7.118779 6.783102
128× 128 1.039313e-3 2.549135e-1 2.530015e-1 2.529428e-1
256× 256 1.973019e-3 1.973351e-3 1.971636e-3 1.491697e-2
512× 512 2.883989e-5 2.884148e-5 6.756577e-4 1.194734e-2
1024× 1024 4.398634e-7 4.882227e-7 5.914269e-4 1.065307e-2

Table 3.7: Behavior of the schemes for various dimensions of the basis (2.38) M – 6th
order compact scheme. The wavenumber is k=25.6.
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Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u− unum‖∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 3.752407 — 2.907471e-1 — 7.342967e-2 —
32× 32 2.290364e-1 4.0342 1.010567e-2 4.8465 1.432143e-4 9.0020
64× 64 6.503502e-2 1.8163 8.516129e-4 3.5688 3.976092e-6 5.1707
128× 128 1.990979e-2 1.7077 7.105160e-5 3.5833 9.373316e-8 5.4066
256× 256 5.743664e-3 1.7934 4.898880e-6 3.8583 1.693751e-9 5.7903
512× 512 2.130201e-3 1.4310 3.736573e-7 3.7127 3.099734e-11 5.7719
1024× 1024 4.835611e-4 2.1392 2.310974e-8 4.0151 7.720891e-12 2.0053

Table 3.8: The deterioration in grid convergence for the wavenumber k=3 and the dimen-
sion of the basis (2.38) M=28 when n− 1 degree Taylor extension used.

Previously, in Section 2.3.1.2 we claimed that in order to obtain nth order ap-

proximation to the original problem one needs Equation Based Taylor extension of

nth degree. Thus, we note that all the computations presented in Tables 3.1 – 3.5

and in Tables 3.6, 3.7 were conducted using a nth degree Equation Based Taylor

extension. Theoretically, the degree of Taylor extension were predicted to be n+ 2,

see [47]. To see whether or not our current (lower) choice of Taylor’s order can be

improved further, we have conducted similar computations, but for an even smaller,

n − 1, degree of Taylor extension. In Table 3.8, we present the results for k= 3.

The data show a certain deterioration of the convergence rate (cf. Table 3.2), which

indicates that the number of terms in the equation-based extension formulae should

not be taken any lower than the order of accuracy n of the scheme (i.e. nth degree

Taylor extension).
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3.1.2 Variable wavenumber Helmholtz equation with fourth order

accuracy

We now use the fourth order accurate compact scheme (1.8) to solve the inhomoge-

neous Helmholtz equation (1.1) with a variable wavenumber inside the circles and

ellipses, subject to Dirichlet or Neumann boundary conditions. The goal of the

computations is to demonstrate the capability of the proposed method to address

variable coefficients and various types of the boundary conditions, and again, to

show the design order of grid convergence for non-conforming boundaries (the dis-

cretization grid is always Cartesian). The domain Ω1 is either a disk of radius R = 1

centered at the origin, or the interior of the ellipse with the major semi-axis a = 1

and minor semi-axis b = 1/2, see formula (1.5).

The Helmholtz equation (1.1) that we solve on the domain Ω1 has a variable

wavenumber k. For the case of the disk we choose

k = k0e
−10(r−r0)6r6 cos θ, (3.4)

and for the case of the ellipse we take

k = k0e
−10(r−r0)6r6 , (3.5)

where r is the polar radius and θ is the polar angle and the parameter r0 =1.6. The

profiles of k are schematically shown in Figure 3.2.
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(a) Ω1 is a circle, formula ( 3.4)

(b) Ω1 is an ellipse, formula ( 3.5)

Figure 3.2: Profiles of the variable wavenumber k on Ω0 for k0 = 25; the part inside Ω1 is
emphasized.

In either case, circle or ellipse, the exact solution is chosen in the form:

u = eikx. (3.6)
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Since k is variable, see formulae (3.4) and (3.5), this solution is not a plane wave, as

shown in Figure 3.3 and 3.4. The corresponding right-hand side f(x, y) in formula

(1.1) is obtained by backward engineering, i.e., by substituting u given by (3.6) into

the left-hand side of the Helmholtz equation.

The boundary condition at Γ = ∂Ω1 for the Helmholtz equation (1.1) can be of

either Dirichlet or Neumann type. The required boundary data are also obtained

by backward engineering, i.e., by taking the trace of either the solution u itself or

its normal derivative ∂u
∂n at the boundary Γ.

When Ω1 is a disk of radius R = 1, the AP (see 2.33) is formulated on the square

Ω0 = {(x, y) | − 1.2 6 x, y 6 1.2}

with the following boundary conditions: v = 0 at y = ±1.2,and

dv

dx
+ iv = 0 at x = 1.2 and

dv

dx
− iv = 0 at x = −1.2. (3.7)

The pair of complex boundary conditions (3.7) guarantees that regardless of k there

will be no resonances in the solution of the AP on the square Ω0.

In the case of the ellipse, the AP is formulated on the rectangle

Ω0 = {(x, y) | − 1.2 6 x 6 1.2, −0.7 6 y 6 0.7}

with the boundary conditions:

v = 0 at y = ±0.7,
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(a) Real part

(b) Imaginary part

Figure 3.3: Real and Imaginary part of the test solution (3.6) in circle for k0 =25.

and the same complex boundary conditions (3.7) at x = ±1.2.

Similar to Section 3.1.1, the AP is discretized on a sequence of uniform, in each

direction, Cartesian grids of dimension 2d × 2d, with a maximum of 2048 × 2048.
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(a) Real Part

(b) Imaginary Part

Figure 3.4: Real and Imaginary part of the test solution (3.6) in ellipse for k0 =25.

For a given d, the grid size in the case of a square is h = 2.4
2d

, and the grid sizes in

the case of a rectangle are hx = 2.4
2d

and hy = 1.4
2d

. The grid sizes are halved every

time d is incremented by 1, which is convenient for studying the convergence. As in
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Section 3.1.1, the AP is also solved by the sparse LU decomposition.

Numerical results for solving the Dirichlet problem for the variable coefficient

Helmholtz equation (1.1) are presented in Table 3.9 in the case of a circle and in

Table 3.10 in the case of an ellipse of an aspect ratio AR = 2 for the range of k’s

that we have investigated, k0= 5, 15, and 25. In Table 3.11 we fix the wavenumber

to be k0= 10 and vary the aspect ratio of an ellipse for the values AR = 2, 4 and

8. Ellipses with even higher AR are presented in later sections. We stress that the

data in the tables fully corroborate the design fourth order rate of grid convergence

for the compact Cartesian scheme (1.8) when the non-conforming boundaries are

handled by the method of difference potentials.

Similar numerical results for the Neumann problem are presented in Table 3.12

for the circle, in Table 3.13 for the ellipse, and in Table 3.14 for ellipses with different

aspect ratios. As with the Dirichlet problem, the data in the tables fully corroborate

the design fourth order rate of grid convergence of the proposed methodology.

Grid Circle

k0 = 5, M = 42 k0 = 15, M = 54 k0 = 25, M = 67

||u− unum||∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 3.038830 — 1.517016e+1 — 1.571341e+2 —
32× 32 2.231693e-2 7.0892 3.324707 5.5119 1.304138e+1 3.5908
64× 64 1.405180e-3 3.9893 1.032080e-1 5.0096 2.744285 2.2486
128× 128 7.302520e-5 4.2662 5.746378e-3 4.1668 5.751020e-2 5.5765
256× 256 4.465171e-6 4.0316 3.454849e-4 4.0560 3.678247e-3 3.9667
512× 512 2.701632e-7 4.0468 2.125100e-5 4.0230 2.265488e-4 4.0211
1024× 1024 1.680068e-8 4.0072 1.321587e-6 4.0072 1.405292e-5 4.0109
2048× 2048 1.040726e-9 4.0129 8.239623e-8 4.0035 8.745530e-7 4.0062

Table 3.9: Grid convergence of the solution to the Dirichlet problem for the circle R= 1.
Variable coefficient Helmholtz equation (1.1) and a fourth order compact scheme (1.8).
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Grid Ellipse

k0 = 5, M = 42 k0 = 15, M = 54 k0 = 25, M = 67

||u− unum||∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 8.283939 — 3.950658e+1 — 5.206655e+1 —
32× 32 1.978583e-2 8.7097 6.015599e-1 6.0372 3.388063e+1 0.6199
64× 64 3.104902e-4 5.9938 7.001777e-3 6.4248 8.662025e-2 8.6115
128× 128 1.659692e-5 4.2256 7.492233e-4 3.2243 5.811711e-3 3.8977
256× 256 5.597237e-7 4.8901 2.551093e-5 4.8762 3.104959e-4 4.2263
512× 512 2.094249e-8 4.7402 1.551669e-6 4.0392 1.881038e-5 4.0450
1024× 1024 6.565249e-10 4.9954 9.538440e-8 4.0239 1.160326e-6 4.0189
2048× 2048 2.761463e-11 4.5713 5.897927e-9 4.0155 7.200706e-8 4.0102

Table 3.10: Grid convergence of the solution to the Dirichlet problem for the ellipse a=1,
b = 1

2 . Variable coefficient Helmholtz equation (1.1) and a fourth order compact scheme
(1.8).

Grid M = 54, AR = 2 M = 72, AR = 4 M = 98, AR = 8

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

16× 16 3.707995e+1 — 6.563552 e+2 — 3.514365e+2 —
32× 32 1.678518e-1 7.7873 3.475799 e+2 0.9171 4.113777e+4 -6.8711
64× 64 1.771571e-3 6.5660 2.900153 e+3 -3.0607 1.338930e+1 1.5852
128× 128 1.915687e-4 3.2091 2.715441 e-4 23.3484 1.148908e+2 -3.1011
256× 256 5.270431e-6 5.1838 1.038533 e-5 4.7086 2.092065e-3 15.7450
512× 512 2.157025e-7 4.6108 8.242304 e-7 3.6554 1.650560e-6 10.3078
1024× 1024 1.315849e-8 4.0350 2.520539 e-8 5.0312 7.926636e-8 4.3801
2048× 2048 7.490176e-10 4.1349 6.660874 e-10 5.2419 6.770679e-9 3.5493

Table 3.11: Grid convergence of the solution to the Dirichlet problem for the wavenumber
k=10 and the ellipses a=1, b∈ {12 ,

1
4 ,

1
8}. Variable coefficient Helmholtz equation (1.1) and

a fourth order compact scheme (1.8).

Grid Ellipse

k0 = 5, M = 42 k0 = 15, M = 54 k0 = 25, M = 67

||u− unum||∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 4.267776e+1 — 1.772119e+2 — 3.649132e+2 —
32× 32 9.712126e-2 8.7795 2.316084 6.2576 3.309569e+1 3.4628
64× 64 7.548180e-3 3.6856 6.203786e-2 5.2224 1.573478e-2 7.7165
128× 128 4.486249e-4 4.0725 4.713176e-3 3.7184 1.589413e-3 3.3074
256× 256 2.486193e-5 4.1735 2.419222e-4 4.2841 6.383346e-4 4.6380
512× 512 1.372890e-6 4.1787 1.635393e-5 3.8868 4.329843e-5 3.8819
1024× 1024 9.028545e-8 3.9266 9.750050e-7 4.0681 2.425497e-6 4.1580
2048× 2048 5.198146e-9 4.1184 6.308512e-8 3.9500 1.584606e-8 3.9361

Table 3.13: Grid convergence of the solution to the Neumann problem for the ellipse a= 1,
b = 1

2 . Variable coefficient Helmholtz equation (1.1) and a fourth order compact scheme
(1.8).
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Grid Circle

k0 = 5, M = 42 k0 = 15, M = 54 k0 = 25, M = 67

||u− unum||∞ rate ||u− unum||∞ rate ||u− unum||∞ rate

16× 16 1.188942 — 8.839874e+1 — 1.713283e+2 —
32× 32 1.801846e-2 6.0441 6.391570e+1 5.5119 7.346974e+1 1.2215
64× 64 1.245872e-3 3.8542 3.179250e-1 5.0096 2.938586 4.6440
128× 128 5.731111e-5 4.4422 3.336937e-2 4.1668 4.978325e-2 5.8833
256× 256 4.343596e-6 3.7219 2.037841e-3 4.0560 2.970674e-3 4.0668
512× 512 2.118921e-7 4.3575 1.218354e-4 4.0230 1.810039e-4 4.0367
1024× 1024 1.467516e-8 3.8519 7.567901e-6 4.0072 1.144116e-5 3.9837
2048× 2048 8.996365e-10 4.0279 4.647261e-7 4.0035 7.144455e-7 4.0013

Table 3.12: Grid convergence of the solution to the Neumann problem for the circle R=1.
Variable coefficient Helmholtz equation (1.1) and a fourth order compact scheme (1.8).

Grid M = 54, AR = 2 M = 72, AR = 4 M = 98, AR = 8

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

16× 16 1.118772e+2 — 5.034143e+3 — 2.361988e+4 —
32× 32 4.950664e-1 7.8201 1.350765e+4 -1.4240 2.316460e+5 -3.2938
64× 64 9.400937e-3 5.7187 6.645722e+1 7.6671 1.798778e+1 13.6526
128× 128 7.042638e-4 3.7386 2.195422e-3 14.8856 5.980095e+1 -1.7332
256× 256 3.226175e-5 4.4482 1.562795e-4 3.8123 3.296630e-2 10.8250
512× 512 2.080956e-6 3.9545 1.028099e-5 3.9261 4.720918e-5 9.4477
1024× 1024 1.202756e-7 4.1128 5.577696e-7 4.2042 3.309864e-6 3.8342
2048× 2048 7.788341e-9 3.9489 3.868259e-8 3.8499 2.209241e-7 3.9051

Table 3.14: Grid convergence of the solution to the Neumann problem for the wavenumber
k=10 and the ellipses a=1, b∈ {12 ,

1
4 ,

1
8}. Variable coefficient Helmholtz equation (1.1) and

a fourth order compact scheme (1.8).

3.2 Exterior scattering problems

We next consider the scattering of an incoming plane wave with a given frequency

(wavelength) and given angle of incidence off an elliptical body with a given aspect

ratio. In our simulations, we take the major semi-axis of the ellipse to be a = 1.8,

while its minor semi-axis varies between b = 0.9 and b = 0.18, which yields aspect
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ratios between 2 and 10. The wavenumber in the Helmholtz equation ( 1.2a) varies

between k0 = 1 and k0 = 25, which yields the variation of the wavelength between

λ0 = 2π and λ0 = 2π/25, i.e., between roughly twice the size 2a of the ellipse and

about 8% of this size. We consider several values of the angle of incidence between

0◦ and 50◦ with respect to the direction of the major axis. We also consider both

Dirichlet and Neumann boundary conditions at the contour Γ, i.e., at the perimeter

of the ellipse. In the context of acoustics, the former corresponds to sound-soft

scattering, whereas the latter corresponds to sound-hard scattering. The exterior

AP is solved on the domain Ω1 shaped as an annulus, Ω1 = {R0 6 r 6 R1}, see

Figure 2.4, with R0 that may vary between 0.1 (for larger aspect ratios) and 0.3

(for smaller aspect ratios), and R1 = 2. This AP is discretized on a uniform, in

each direction, polar grid that may have between 64 × 64 and 4096 × 4096 cells.

The quantity M that represents the dimension of the basis on Γ, see formula (2.38),

is grid-independent and chosen so as to guarantee that the given boundary data

(Dirichlet or Neumann) are approximated by the corresponding finite Fourier series

up to the machine precision. The problem is solved using the simplified methodology

of Section 2.3.6. In doing so, the discrete exterior AP is integrated by means of the

separation of variables combined with a FFT. The exact nonlocal ABC at the outer

circle r = R1 is conveniently set in the Fourier space, see [8].

As the overall set of results for all wavenumbers, incidence angles, aspect ratios,

etc., is rather large, we have chosen to show only a representative sample. In Fig-

ures 3.5 and 3.6, we show the schematic geometry for two ellipses — of aspect ratio

2 and of aspect ratio 10 (cf. Figure 2.4).

To assess the grid convergence, we do not evaluate the exact solution using its
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Figure 3.5: Schematic of the polar grid for the exterior AP, the elliptic scatterer of aspect
ratio 2, and the grid boundary γ.

expansion with respect to Mathieu functions [6], because this may entail numerical

difficulties of its own. We rather evaluate the infinity norm of the difference between

the numerical solutions obtained on two consecutive grids, uh and u2h.

Tables 3.15 through 3.22 demonstrate the design fourth order rate of the grid

convergence for the case of a Dirichlet boundary condition on Γ. We note that the

convergence on coarser grids looks somewhat more “erratic” for slenderer ellipses.

This is likely accounted for by insufficient grid resolution in the areas of high curva-

ture, i.e., near the tips of the major axis. Nonetheless, on finer grids the convergence

rate approaches its correct asymptotic value of 4. Similar results are obtained for
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Figure 3.6: Schematic of the polar grid for the exterior AP, the elliptic scatterer of aspect
ratio 10, and the grid boundary γ.

the Neumann boundary condition on Γ, see Tables 3.24 and 3.25, as well as for a

variety of other Dirichlet and Neumann cases that are not presented in these tables.

Grid k0 = 1, M = 12 k0 = 10, M = 37 k0 = 25, M = 69

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 2.737716ee-3 — 6.104800 — 3.945149e+1 —
128× 128 3.658040ee-4 2.9038 6.761083e-2 6.4965 1.020563e+2 -1.3712
256× 256 2.075372ee-5 4.1396 3.888347e-3 4.1200 3.843873e-1 8.0526
512× 512 1.134933ee-6 4.1927 2.382304e-4 4.0287 2.189631e-2 4.1338
1024× 1024 6.890566ee-8 4.0418 1.481515e-5 4.0072 1.329834e-3 4.0414
2048× 2048 4.235718ee-9 4.0239 9.247807e-7 4.0018 8.251120e-5 4.0105
4096× 4096 2.637849ee-10 4.0052 5.778413e-8 4.0004 5.147419e-6 4.0027

Table 3.15: Sound-soft scattering of a plane wave with incidence angle 0◦ about an ellipse
with aspect ratio 2.
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Grid k0 = 1, M = 12 k0 = 10, M = 37 k0 = 25, M = 69

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 2.924441e-3 — 1.399531 — 1.588919e+1 —
128× 128 3.686772e-4 2.9877 9.024242e-2 3.9550 2.571935e+1 -0.6948
256× 256 2.092322e-5 4.1392 5.042251e-3 4.1617 4.528627e-1 5.8276
512× 512 1.140182e-6 4.1978 3.077507e-4 4.0342 2.614107e-2 4.1147
1024× 1024 7.045679e-8 4.0164 1.912254e-5 4.0084 1.576210e-3 4.0518
2048× 2048 4.352290e-9 4.0169 1.193405e-6 4.0021 9.766250e-5 4.0125
4096× 4096 2.708936e-10 4.0060 7.456103e-8 4.0005 6.090803e-6 4.0031

Table 3.16: Sound-soft scattering of a plane wave with incidence angle 35◦ about an ellipse
with aspect ratio 2.

Grid k0 = 1, M = 12 k0 = 10, M = 37 k0 = 25, M = 69

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 3.647013e-2 — 6.942957 — 6.094755e+5 —
128× 128 3.229204e-3 3.4975 1.556797e-1 5.4789 8.271102 16.1691
256× 256 5.948035e-4 2.4407 5.275428e-3 4.8831 4.000126e-1 4.3700
512× 512 2.733103e-5 4.4438 2.869505e-4 4.2004 2.340879e-2 4.0949
1024× 1024 1.429272e-6 4.2572 1.782570e-5 4.0088 1.410523e-3 4.0527
2048× 2048 8.252679e-8 4.1143 1.112633e-6 4.0019 8.738691e-5 4.0127
4096× 4096 5.198425e-9 3.9887 6.951841e-8 4.0004 5.449762e-6 4.0032

Table 3.17: Sound-soft scattering of a plane wave with incidence angle 35◦ about an ellipse
with aspect ratio 3.

Grid k0 = 1, M = 12 k0 = 10, M = 37 k0 = 25, M = 69

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 2.261699e-2 — 5.730228 — 1.742757e+3 —
128× 128 3.149537e-3 2.8442 9.782407e-2 5.8723 9.548658 7.5119
256× 256 6.271734e-4 2.3282 4.605138e-3 4.4089 2.276872 2.0682
512× 512 2.917059e-5 4.4263 2.738948e-4 4.0716 2.445093e-2 6.5410
1024× 1024 1.537777e-6 4.2456 1.701433e-5 4.0088 1.483170e-3 4.0431
2048× 2048 8.870759e-8 4.1156 1.061794e-6 4.0022 9.201076e-5 4.0107
4096× 4096 5.523241e-9 4.0055 6.633567e-8 4.0006 5.739903e-6 4.0027

Table 3.18: Sound-soft scattering of a plane wave with incidence angle 15◦ about an ellipse
with aspect ratio 3.
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Grid k0 = 1, M = 13 k0 = 10, M = 39 k0 = 25, M = 73

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 7.024091e+1 — 1.800415e+3 — 1.189542e+7 —
128× 128 1.117795e+1 2.6517 1.080259e+1 7.3808 2.905446e+3 11.9994
256× 256 8.069814e-3 10.4358 5.008329e-2 7.7528 6.346536e-1 12.1605
512× 512 1.523137e-3 2.4055 5.161442e-3 3.2785 2.456628e-2 4.6912
1024× 1024 7.604331e-5 4.3241 4.003719e-4 3.6884 1.471074e-3 4.0617
2048× 2048 3.763327e-6 4.3367 1.942630e-5 4.3653 9.124847e-5 4.0109
4096× 4096 2.072289e-7 4.1827 1.066348e-6 4.1873 5.691707e-6 4.0029

Table 3.19: Sound-soft scattering of a plane wave with incidence angle 15◦ about an ellipse
with aspect ratio 5.

Grid k0 = 1, M = 13 k0 = 10, M = 39 k0 = 25, M = 73

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 7.754767e+1 — 1.618151e+3 — 2.224965e+4 —
128× 128 1.489596e+1 2.3802 4.674100 8.4354 2.185893e+1 9.9913
256× 256 1.111821e-2 10.3878 1.362536e-1 5.1003 7.391991e-1 4.8861
512× 512 1.435914e-3 2.9529 5.846135e-3 4.5427 5.567719e-2 3.7308
1024× 1024 6.645732e-5 4.4334 4.166078e-4 3.8107 1.532545e-3 5.1831
2048× 2048 3.288638e-6 4.3369 2.038867e-5 4.3529 9.506068e-5 4.0109
4096× 4096 1.804245e-7 4.1880 1.145084e-6 4.1542 5.933124e-6 4.0020

Table 3.20: Sound-soft scattering of a plane wave with incidence angle 50◦ about an ellipse
with aspect ratio 5.

Grid k0 = 1, M = 11 k0 = 10, M = 32 k0 = 25, M = 56

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 2.247929e+2 — 4.633311e+3 — 1.553633e+5 —
128× 128 5.212738e+2 -1.2134 4.70154e+2 3.3008 1.547453e+5 0.0057
256× 256 8.031341e+2 -0.6236 4.419326e+2 0.0893 8.284062e+3 7.5453
512× 512 1.195681e-2 16.0355 4.052018e-1 10.0910 9.340049e-1 9.7927
1024× 1024 4.655482e-3 1.3608 2.785232e-2 3.8628 8.518332e-2 3.4548
2048× 2048 5.918121e-4 2.9757 1.895585e-3 3.8771 2.569198e-3 5.0512
4096× 4096 2.142775e-5 4.7876 8.621134e-5 4.4586 1.937799e-4 3.7288

Table 3.21: Sound-soft scattering of a plane wave with incidence angle 50◦ about an ellipse
with aspect ratio 10.
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Grid k0 = 1, M = 13 k0 = 10, M = 39 k0 = 25, M = 73

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 2.448706e+2 — 2.323499 e+4 — 2.151660e+7 —
128× 128 4.433401e+2 -0.8564 1.156875e+4 1.0061 3.572665e+6 2.5904
256× 256 6.193218e+2 -0.4823 2.889933e+2 5.3231 1.535344e+4 7.8623
512× 512 1.050433e-2 15.8474 1.251498e-1 11.1732 4.447023e-1 15.0754
1024× 1024 5.264725e-3 0.9966 1.706648e-2 2.8744 3.105638e-2 3.8399
2048× 2048 6.643254e-4 2.9864 1.993312e-3 3.0979 1.968995e-3 3.9794
4096× 4096 2.408868e-5 4.7855 1.040010e-4 4.2605 2.088858e-4 3.2367

Table 3.22: Sound-soft scattering of a plane wave with incidence angle 50◦ about an ellipse
with aspect ratio 10.

Grid k0 = 1, M = 13 k0 = 10, M = 35 k0 = 25, M = 61

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 1.181451e-2 — 1.316527 e+1 — 1.879091e+2 —
128× 128 3.146854e-4 5.2305 5.405421e-1 4.6062 7.405706e+1 1.3433
256× 256 1.566558e-5 4.3282 4.087686e-3 7.0470 3.811382e-1 7.6022
512× 512 1.011771e-6 3.9526 2.520713e-4 4.0194 2.007000e-2 4.2472
1024× 1024 6.381159e-8 3.9869 1.567661e-5 4.0071 1.242483e-3 4.0137
2048× 2048 4.023256e-9 3.9874 9.784086e-7 4.0020 7.724207e-5 4.0077
4096× 4096 2.545110e-10 3.9826 6.104984e-8 4.0024 4.834473e-6 3.9980

Table 3.23: Sound-hard scattering of a plane wave with incidence angle 50◦ about an
ellipse with aspect ratio 2.

Grid k0 = 1, M = 14 k0 = 10, M = 43 k0 = 25, M = 79

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 5.859690e-2 — 4.558268 — 1.053224e+2 —
128× 128 9.846534e-3 2.5731 1.448027e-1 4.9763 4.461393e+1 1.2392
256× 256 1.884702e-4 5.7072 8.659281e-3 4.0637 5.844125e-1 6.2544
512× 512 9.615561e-6 4.2928 2.363689e-4 5.1951 2.368270e-2 4.6251
1024× 1024 4.412894e-7 4.4456 1.470104e-5 4.0071 1.454638e-3 4.0251
2048× 2048 2.845780e-8 3.9548 9.188393e-7 4.0000 9.027833e-5 4.0101
4096× 4096 1.589844e-9 4.1619 5.934903e-8 3.9525 5.631228e-6 4.0029

Table 3.24: Sound-hard scattering of a plane wave with incidence angle 0◦ about an ellipse
with aspect ratio 3.
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Grid k0 = 1, M = 13 k0 = 10, M = 35 k0 = 25, M = 61

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 3.381436 — 5.287685 — 8.812860e+4 —
128× 128 1.076195 1.6517 1.602327 1.7225 6.882858e+1 10.3224
256× 256 1.593996e-1 2.7552 5.157602e-1 1.6354 2.620046 4.7153
512× 512 1.921666e-3 6.3741 9.974005e-3 5.6924 3.826752e-2 6.0973
1024× 1024 3.456720e-5 5.7968 2.426475e-4 5.3612 1.628882e-3 4.5542
2048× 2048 3.522082e-6 3.2949 1.769029e-5 3.7778 1.062220e-4 3.9387
4096× 4096 1.822888e-7 4.2721 9.543673e-7 4.2123 6.264534e-6 4.0837

Table 3.25: Sound-hard scattering of a plane wave with incidence angle 50◦ about an
ellipse with aspect ratio 5.

We also emphasize that the scheme converges with the same design rate for all

angles of incidence, all wavenumbers, and all aspect ratios. The actual values of the

error may, of course, depend on the specific parameters involved. For example, from

Tables 3.16 through 3.25 one can see that as the wavenumber k0 increases while all

other parameters remain the same (the aspect ratio, the grid, etc.), the error also

increases (maximum norm evaluated across the domain). On the other hand, the

angle of incidence does not affect the convergence rate and does not noticeably affect

the actual error either. In Figures 3.7, 3.8 and 3.9 we show the dependence of the

error on the angle of incidence for both sound-soft (Dirichlet boundary condition)

and sound-hard (Neumann boundary condition) scattering about an ellipse of aspect

ratio 3. We see that for both k0 = 3,k0 = 15 and k0 = 30 the error changes by less

than a factor of 2 over the entire 90◦ range.

For the same setting as before, we also conducted a series of computations that

corroborate the pollution effect. As mentioned in Section 1.2, to maintain the same

level of error for different values of the wavenumber k, the quantity hnkn+1 must

remain constant, where h is the grid size and n is the order of accuracy. This

means, in particular, that if the grid size h is halved, then the same level of error
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Figure 3.7: Error vs. the angle of incidence for sound-soft (Dirichlet BC) and sound-hard (Neu-
mann BC) scattering about an ellipse with aspect ratio 3 for the wavenumber k0 = 3 and the
dimension of the basis (2.38) M =21 computed on the polar grid of dimension 1024× 1024.

shall be expected if the wavenumber k increases by a factor of 2
n

n+1 . Specifically, the

wavenumber k should increase by a factor of 2
2
3 ≈ 1.5874 for the central difference

second order scheme, by a factor of 2
4
5 ≈ 1.7411 for the fourth order compact

scheme (1.8), and by a factor of 2
5
6 ≈ 1.7818 for the sixth order compact scheme of

[56]. We see that this factor is always less than two, which means that the “points-

per-wavelength” quantity does not stay constant but rather increases as k grows.

However, the higher the accuracy n of the scheme the slower the error increases. In

Table 3.26, we summarize the computational data for all three schemes. Specifically,

we fix the value of k = 4 for the grid of dimension 256× 256, and then vary h and

change k according to the power law 2
n

n+1 that corresponds to each scheme.

We next perform complexity profiling of the algorithm. We stress that our

methodology is naturally very effective for problems with several impinging waves
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Figure 3.8: Error vs. the angle of incidence for sound-soft (Dirichlet BC) and sound-hard (Neu-
mann BC) scattering about an ellipse with aspect ratio 3 for the wavenumber k0 = 15 and the
dimension of the basis (2.38) M =52 computed on the polar grid of dimension 1024× 1024.

(a) k0 = 30, M = 86

Figure 3.9: Error vs. the angle of incidence for sound-soft (Dirichlet BC) and sound-hard (Neu-
mann BC) scattering about an ellipse with aspect ratio 3 for the wavenumber k0 = 30 and the
dimension of the basis (2.38) M =86 computed on the polar grid of dimension 1024× 1024.
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Grid k M Problem

Diriclet Neumann

||uh − u2h||∞ ||uh − u2h||∞
64× 64 1.3195 14 5.088513e-3 1.107942e-3
128× 128 2.2974 18 4.707891e-4 1.385318e-4
256× 256 4.0000 24 5.628050e-5 1.061957e-5
512× 512 6.9644 32 4.670625e-5 4.257857e-5
1024× 1024 12.125 46 4.203750e-5 3.942691e-5
2048× 2048 21.112 66 3.922412e-5 3.755659e-5
4096× 4096 36.758 100 3.764344e-5 3.643574e-5

Table 3.26: Behavior of the schemes for various k — manifestation of the pollution effect.

(see discussion in one dimensional example in Chapter 2 and also Algorithm 11).

This is useful in many practical problems, therefore information about complexity

in solving a scattering problem with multiple incident angles is presented.

Our implementation was written in MATLAB, and the linear systems obtained

from our scheme are solved via MATLAB’s built-in direct sparse solver. The com-

putations were performed on a 2.93 GHz Quad-Core Intel Xeon with 32 Gb of RAM

running on Mac OS X.

In Table 3.27 we present sound-soft scattering of a plane wave about an ellipse

with an aspect ratio of 2 for the wavenumber k0 = 20. The dimension of the basis

(2.38) is M=43. We first solve for an incidence angle of 0◦ and then use the obtained

information to solve the same problem with an impinging wave at a different incident

angle of 5◦. Column 4 shows that the computational complexity of the method is

somewhat better than linear as the grid is refined. This behavior is caused by the

direct solver used which was developed in [8]. Column 7 shows the linear behavior

of the computational complexity of the calculation of the second impinging wave.

The matrices Q (2.64) computed for the first impinging wave don’t need to be
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recalculated, and therefore the reduced time at this stage is due to the calculation of

the coefficients and obtaining the final solution by solving another auxiliary problem

one more time using the solver from [8], see Section 2.3.6. Column 8 shows the time

saved when a second problem is solved relative to the first one. Similar savings

apply for any number of different incident waves. A sound-hard scattering with the

same setting is presented in Table 3.28. We find a similar linear behavior and a

similar saving of time for the second problem.

Grid 1 wave θ(inc) = 0◦ 2 wave θ(inc) = 5◦ Saving

||uh − u2h||∞ Time(s) Scaling ||uh − u2h||∞ Time(s) Scaling

64× 64 1.354291e+1 6.2004e-1 — 1.110603e+1 8.7971e-2 — 7.05
128× 128 1.234442e-1 1.4990 2.4176 1.317353e-1 1.9846e-1 2.2560 7.55
256× 256 6.971178e-3 4.7169 3.1466 7.434611e-3 4.0498e-1 2.0405 11.65
512× 512 4.245374e-4 1.7626e+1 3.7368 4.521149e-4 1.1563 2.8553 15.24
1024× 1024 2.635393e-5 6.6883e+1 3.7944 2.805860e-5 3.9594 3.4240 16.89
2048× 2048 1.644256e-6 2.6894e+2 4.0211 1.750468e-6 1.6856e+1 4.2571 15.96
4096× 4096 1.027215e-7 1.4513e+3 5.3963 1.093551e-7 8.7533e+1 5.1929 16.58

Table 3.27: CPU times for sound-soft scattering of a plane wave with incidence angles 0◦

and 5◦ about an ellipse with aspect ratio 2 for wavenumber k0 = 20. The dimension of the
basis M=43.

Grid 1 wave θ(inc) = 0◦ 2 wave θ(inc) = 5◦ Saving

||uh − u2h||∞ Time(s) Scaling ||uh − u2h||∞ Time(s) Scaling

64× 64 6.366639 6.1528e-1 — 5.899738 1.3213e-1 — 4.66
128× 128 5.268134 e-1 1.4878 2.4180 1.096330 2.0253e-1 1.5328 7.35
256× 256 7.056579e-3 4.7161 3.1700 7.205329e-3 4.0841e-1 2.0166 11.55
512× 512 4.305407e-4 1.7395e+1 3.6884 4.414049e-4 1.1562 2.8309 15.05
1024× 1024 2.680923e-5 6.6856e+1 3.8434 2.748845e-5 3.9751 3.4381 16.82
2048× 2048 1.673873e-6 2.6953e+2 4.0315 1.715142e-6 1.6876e+1 4.2455 15.97
4096× 4096 1.046800e-7 1.4521e+3 5.3875 1.071411e-7 8.7569e+1 5.1888 16.58

Table 3.28: CPU times for hard-soft scattering of a plane wave with incidence angles 0◦

and 5◦ about an ellipse with aspect ratio 2 for wavenumber k0 = 20. The dimension of the
basis M=43.
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3.3 Transmission–Reflection problems

3.3.1 Piecewise constant coefficients

The numerical simulation of the simultaneous transmission and scattering of waves

off a given shape (an ellipse) is done using a computational framework similar to that

of Section 3.2, except that instead of setting a boundary condition on Γ we assume

that the medium inside the ellipse is characterized by a constant wavenumber k1

(typically, k1 > k0). At the interface Γ the overall solution and its first normal

derivative are continuous.

The exterior AP and its discretization remain the same as in Section 3.2, while

the interior AP is formulated on the rectangle [−a−0.2, a+ 0.2]× [−b−0.2, b+ 0.2],

where a and b are the major and minor semi-axes of the ellipse, respectively. We

keep a = 1.8 and vary b between 0.9 and 0.15, which yields aspect ratios between 2

and 12. The boundary conditions for the interior AP are zero Dirichlet at the two

horizontal sides of the rectangle, and local Sommerfeld-type conditions (complex) at

its two vertical sides (see (2.34)). The latter guarantees the unique solvability of the

interior AP (no resonances), see [9, Section 4.2] or [42, Section 5.2]. The interior AP

is discretized by the compact scheme [9] with fourth order accuracy on a uniform,

in each coordinate direction, Cartesian grid. It is then solved by a sparse direct

linear solver built into MATLAB. To simplify the monitoring and analysis of the

grid convergence, the grid dimensions for the interior and exterior AP are always

kept the same, i.e., those two grids are refined synchronously. As in Section 3.2, the

convergence is assessed by evaluating the maximum volume norm of the difference

between the numerical solutions obtained on two consecutive grids. In this section
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though, it is done independently for the exterior and interior parts of the overall

solution.

Grid Exterior

k0 = 1, k1 = 3,M = 18 k0 = 5, k1 = 15,M = 43 k0 = 10, k0 = 30,M = 70

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 4.595301e-3 — 3.193901 — 6.548224e+2 —
128× 128 1.680380e-4 4.7733 3.294341e-1 3.2773 1.939342 8.3994
256× 256 9.570738e-6 4.1340 1.892338e-3 7.4437 1.929997e-1 3.3289
512× 512 4.988526e-7 4.2619 1.133776e-4 4.0610 6.944723e-3 4.7965
1024× 1024 2.966397e-8 4.0718 6.982484e-6 4.0213 4.325129e-4 4.0051
2048× 2048 1.713626e-9 4.1136 4.349789e-7 4.0047 2.695934e-5 4.0039

Interior

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 1.580527e-2 — 8.622188 — 7.361263e+2 —
128× 128 1.371018e-4 6.8490 4.000175e-1 4.4299 4.175908 7.4617
256× 256 8.490845e-6 4.0132 2.746052e-3 7.1866 2.013473e-1 4.3743
512× 512 4.202829e-7 4.3365 1.663763e-4 4.0448 8.816271e-3 4.5134
1024× 1024 2.442490e-8 4.1049 1.028977e-5 4.0152 5.509656e-4 4.0001
2048× 2048 1.366547e-9 4.1597 6.430838e-7 4.0001 3.435270e-5 4.0035

Table 3.29: Transmission and scattering of a plane wave with incidence angle 40◦ about
an ellipse with aspect ratio 2.

The data Tables 3.29, 3.30 and 3.31 demonstrate the grid convergence for two

particular sets of parameters involved. The convergence for other cases that we

have tried with piecewise constant k looks similar. In addition to showing the

convergence data in Tables 3.29, 3.30 and 3.31, we also plot an absolute value and

real and imaginary parts of the solutions that we have computed, see Figures 3.10

through 3.15.
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Grid Exterior

k0 = 1, k1 = 3,M = 18 k0 = 5, k1 = 15,M = 43 k0 = 10, k0 = 30,M = 70

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 3.397953e-2 — 1.928982 — 1.564833e+4 —
128× 128 5.257675e-4 6.0141 1.222531 0.6580 2.540071 12.5889
256× 256 2.968034e-5 4.1468 1.256795e-2 6.6040 2.505713 0.0196
512× 512 1.621693e-6 4.1939 7.215245e-4 4.1226 5.294069e-2 5.5647
1024× 1024 8.319173e-8 4.2849 4.686281e-5 3.9445 3.040675e-3 4.1219
2048× 2048 5.185747e-9 4.0038 2.980399e-6 3.9749 1.824703e-4 4.0587

Interior

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

64× 64 5.915841e-2 — 4.502945 — 2.997456e+4 —
128× 128 4.727249e-4 6.9674 1.476710 1.6085 1.454990e+1 11.0085
256× 256 9.910096e-6 5.5760 7.240317e-2 4.3502 3.219025 2.1763
512× 512 8.298524e-7 3.5780 7.604703e-4 6.5730 5.533717e-2 5.8622
1024× 1024 3.405935e-8 4.6067 5.105078e-5 3.8969 3.352915e-3 4.0448
2048× 2048 2.025545e-9 4.0717 3.330358e-6 3.9382 2.093157e-4 4.0017

Table 3.30: Transmission and scattering of a plane wave with incidence angle 40◦ about
an ellipse with aspect ratio 3.

Grid Exterior

k0 = 1, k1 = 3,M = 17 k0 = 5, k1 = 15,M = 42 k0 = 10, k0 = 30,M = 68

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

128× 128 3.339419 — 1.011317e+2 — 8.966609e+2 —
256× 256 2.525248e-3 10.3690 4.429088 4.5131 1.265494e+1 6.1468
512× 512 3.016655e-4 3.0654 3.727909e-2 6.8925 5.603543e-1 4.4972
1024× 1024 7.296313e-5 2.0477 4.070004e-3 3.1953 6.315946e-3 6.4712
2048× 2048 9.046537e-6 3.0117 3.237602e-4 3.6520 3.668013e-4 4.1059

Interior

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

128× 128 2.895946 — 7.446942e+2 — 4.085428e+4 —
256× 256 2.649119e-3 10.0943 4.907694 7.2455 1.662587e+2 7.9409
512× 512 2.590272e-4 3.3543 4.386424e-2 6.8059 1.008079 7.3657
1024× 1024 5.793892e-5 2.1605 3.933254e-3 3.4792 8.501939e-3 6.8896
2048× 2048 6.983459e-6 3.0525 3.009321e-4 3.7082 3.740583e-4 4.5065

Table 3.31: Transmission and scattering of a plane wave with incidence angle 40◦ about
an ellipse with aspect ratio 12.
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(a) Aspect ratio 2

(b) Aspect ratio 10

Figure 3.10: Transmission and scattering of a plane wave with incidence angle 40◦ about
an ellipse with k1 = 20 (inside) and k0 = 10 (outside). Absolute value of the total field is
shown. The grid dimension is 1024× 1024 for both the interior AP (Cartesian) and exterior
AP (polar).
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(a) Aspect ratio 2

(b) Aspect ratio 10

Figure 3.11: Transmission and scattering of a plane wave with incidence angle 40◦ about
an ellipse with k1 = 20 (inside) and k0 = 10 (outside). Absolute value of the total field is
shown. The grid dimension is 1024× 1024 for both the interior AP (Cartesian) and exterior
AP (polar).



3.3. TRANSMISSION–REFLECTION PROBLEMS 125

(a) Aspect ratio 2

(b) Aspect ratio 10

Figure 3.12: Transmission and scattering of a plane wave with incidence angle 40◦ about
an ellipse with k1 = 20 (inside) and k0 = 10 (outside). Absolute value of the total field is
shown. The grid dimension is 1024× 1024 for both the interior AP (Cartesian) and exterior
AP (polar).
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(a) Aspect ratio 3

(b) Aspect ratio 5

Figure 3.13: Transmission and scattering of a plane wave with incidence angle 180◦ about
an ellipse with k1 = 20 (inside) and k0 = 10 (outside). Absolute value of the total field is
shown. The grid dimension is 513 × 513 for both the interior AP (Cartesian) and exterior
AP (polar).
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(a) Aspect ratio 3

(b) Aspect ratio 5

Figure 3.14: Transmission and scattering of a plane wave with incidence angle 180◦ about
an ellipse with k1 = 20 (inside) and k0 = 10 (outside). Absolute value of the total field is
shown. The grid dimension is 513 × 513 for both the interior AP (Cartesian) and exterior
AP (polar).
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(a) Aspect ratio 3

(b) Aspect ratio 5

Figure 3.15: Transmission and scattering of a plane wave with incidence angle 180◦ about
an ellipse with k1 = 20 (inside) and k0 = 10 (outside). Absolute value of the total field is
shown. The grid dimension is 513 × 513 for both the interior AP (Cartesian) and exterior
AP (polar).
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3.3.2 Piecewise smooth coefficients

In this section, we keep the computational setting the same as in Section 3.3.1,

except that we allow for a smooth variation of the wavenumber inside the ellipse:

k =


k1e
−10(r−r0)6r6 , if r 6 r0,

k1, if r > r0,

(3.8)

where r =
√
x2 + y2 and r0 = 1.6. The variable coefficient Helmholtz equation

is approximated with fourth order accuracy by the compact scheme of [9]. In Ta-

ble 3.32, we show the results for the ellipse with aspect ratio 2: a = 1.8 and b = 0.9.

In Table 3.33, we show the results for the ellipse with aspect ratio 3: a = 1.8 and

b = 0.6. In Table 3.34, we show the results for the ellipse with aspect ratio 5: a = 1.8

and b = 0.36. These results corroborate the design fourth order convergence rate of

the algorithm in the case of variable coefficients.

Grid Exterior

k0 = 1, k1 = 3,M = 50 k0 = 5, k1 = 15,M = 50 k0 = 10, k0 = 30,M = 69

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

128× 128 1.196903e-1 — 2.740357 — 9.679627 —
256× 256 8.888395e-4 7.0732 1.071586e-1 4.6765 8.093132e-1 3.5802
512× 512 5.054118e-5 4.1364 1.339804e-3 6.3216 8.933817e-3 6.5013
1024× 1024 9.918967e-7 5.6711 4.031620e-5 5.0545 5.392737e-4 4.0502
2048× 2048 7.239554e-8 3.7762 2.729896e-6 3.8844 4.167435e-5 3.6938

Interior

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

128× 128 2.169952e-1 — 5.413927 — 2.473694e+1 —
256× 256 1.267208e-3 7.4199 1.422706e-1 5.2500 1.466237 4.0765
512× 512 4.573756e-5 4.7921 1.506757e-3 6.5610 5.642709e-2 4.6996
1024× 1024 6.765407e-7 6.0791 2.968551e-5 5.6655 4.756129e-4 6.8905
2048× 2048 5.114153e-8 3.7256 2.285437e-6 3.6992 2.445819e-5 4.2814

Table 3.32: Transmission and scattering of a plane wave with incidence angle 40◦ about an
inhomogeneous ellipse with aspect ratio 2 and interior wavenumber given by formula ( 3.8).
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Grid Exterior

k0 = 1, k1 = 3,M = 44 k0 = 5, k1 = 15,M = 43 k0 = 10, k0 = 30,M = 70

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

128× 128 1.342633e-3 — 3.189426e-1 — 2.273503 —
256× 256 4.704559e-5 4.8349 2.112324e-3 7.2383 1.428778 0.6701
512× 512 1.972406e-6 4.5760 1.037815e-4 4.3472 8.515279e-3 7.3905
1024× 1024 1.128138e-7 4.1279 6.701632e-6 3.9529 4.664540e-4 4.1902
2048× 2048 6.620319e-9 4.0909 5.703865e-7 3.5545 2.867676e-5 4.0238

Interior

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

128× 128 3.067343e-3 — 1.043931 — 9.253122 —
256× 256 6.693782e-5 5.5180 3.225823e-2 5.0162 2.960923 1.6439
512× 512 1.396376e-6 5.5831 1.002967e-4 8.3292 4.859728e-2 5.9290
1024× 1024 8.178574e-8 4.0937 6.580268e-6 3.9300 4.749737e-4 6.6769
2048× 2048 5.333208e-9 3.9388 4.146442e-7 3.9882 2.935093e-5 4.0164

Table 3.33: Transmission and scattering of a plane wave with incidence angle 40◦ about an
inhomogeneous ellipse with aspect ratio 3 and interior wavenumber given by formula ( 3.8).

Grid Exterior

k0 = 1, k1 = 3,M = 50 k0 = 5, k1 = 15,M = 50 k0 = 10, k0 = 30,M = 69

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

128× 128 1.196903e-1 — 2.740357 — 9.679627 —
256× 256 8.888395e-4 7.0732 1.071586e-1 4.6765 8.093132e-1 3.5802
512× 512 5.054118e-5 4.1364 1.339804e-3 6.3216 8.933817e-3 6.5013
1024× 1024 9.918967e-7 5.6711 4.031620e-5 5.0545 5.392737e-4 4.0502
2048× 2048 7.239554e-8 3.7762 2.729896e-6 3.8844 4.167435e-5 3.6938

Interior

||uh − u2h||∞ rate ||uh − u2h||∞ rate ||uh − u2h||∞ rate

128× 128 2.169952e-1 — 5.413927 — 2.473694e+1 —
256× 256 1.267208e-3 7.4199 1.422706e-1 5.2500 1.466237 4.0765
512× 512 4.573756e-5 4.7921 1.506757e-3 6.5610 5.642709e-2 4.6996
1024× 1024 6.765407e-7 6.0791 2.968551e-5 5.6655 4.756129e-4 6.8905
2048× 2048 5.114153e-8 3.7256 2.285437e-6 3.6992 2.445819e-5 4.2814

Table 3.34: Transmission and scattering of a plane wave with incidence angle 40◦ about an
inhomogeneous ellipse with aspect ratio 5 and interior wavenumber given by formula ( 3.8).



Chapter 4

Discussion and Conclusion

4.1 Discussion

We have described a combined implementation of the method of difference poten-

tials along with the compact high order accurate finite difference schemes for the

numerical solution of wave propagation problems in the frequency domain. The

governing Helmholtz equation is approximated on a regular structured grid, which

is efficient and entails a low computational complexity. At the same time, the

method guarantees no loss of accuracy for curvilinear non-conforming boundaries,

and can also handle variable coefficients that describe a non-homogeneous medium.

As such, the resulting method provides a viable alternative to both BEM and high

order FEM.

The performance of the method and, in particular, its design high order accu-

racy, has been corroborated numerically by solving a variety of 2D interior, exterior,

131
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and reflection/transmission Helmholtz problems, including those with variable co-

efficients, on Cartesian and Polar grids for non-conforming boundaries/interfaces

shaped as circles and ellipses.

Among other advantages of the proposed methodology is its capability to accu-

rately reconstruct the solution and/or its normal derivative directly at the boundary.

This is done without interpolating and/or using one-sided differences, such as in con-

ventional FD, and with no additional developments needed as in FEM, see, e.g., [11].

Additional advantages of the method are the absence of any singular integrals or

similar constructs, the minimum number of unknowns that characterize the discrete

solution — just one per grid node, and the same number of boundary conditions

needed for the scheme as that needed for the underlying differential equation.

For exterior problems we constructed auxiliary problems (see Section 2.3.2.2)

with the appropriate artificial boundary conditions (ABCs), see [64]. For the con-

stant coefficient 2D Helmholtz equation (typical for the far field), the APs were

formulated using polar coordinates, which enables a natural and efficient implemen-

tation of the exact non-local ABCs in Fourier space. The proposed methodology is

extended for the combined reflection/transmission problems. The latter formulation

involves a joint solution of the interior and exterior Calderon’s BEPs constructed at

the interface between the interior and exterior sub-regions.

Thus far, we have computed solutions only for circular and elliptical boundaries.

The case of general smooth boundaries was analyzed theoretically in [42, Appendix

A], and the corresponding Taylor-based extension operators have been developed.
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4.2 Conclusions and future research

We have simulated a broad range of constant and variable coefficient 2D test cases

for non-conforming boundaries/interfaces on regular structured grids. Our com-

putations convincingly corroborate the design high order accuracy of the proposed

method.

A study is needed to explore alternative strategies for choosing M – the dimen-

sion of the basis used for representing the solution at the boundary Γ as in (2.38) or

(2.59). In addition to that, the possibility of using other bases has to be examined.

The ideas of reduced order modeling [26] (or, similarly, principal component analysis

or proper orthogonal decomposition) has to be investigated to further reduce the

dimension of the basis on Γ. Other bases may be more convenient to use like in the

case of piece-wise parametrization [10].

Actual computations of the scattering and transmission/scattering solutions for

arbitrarily shaped domains (other than circles or ellipses) will need to be performed.

The corresponding general construct of the equation based extension has been de-

veloped in [42, Appendix A].

The domains of a more general shape (beyond circles and ellipses) have to be

developed. Arbitrary smooth boundaries will require a more general construction

of the extension operators (see Appendix in [42]).

Yet another direction for future work will be to allow for multiple sub-regions,

for example, multiple scatterers immersed into the same background medium. The

simplest case will amount to considering a piece-wise constant function k2(x, y) in
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the Helmholtz equation (1.1), while more elaborate settings may also include the

variation of material characteristics.

The proposed methodology needs to be extended to 3D wave propagation which

requires that the coordinates associated with a curve be replaced with surface-

oriented coordinates, see [32].

Finally, the extension of the proposed methodology to time-dependent prob-

lems (e.g., the wave, i.e., d’Alembert, equation instead of the Helmholtz equation)

requires additional theoretical developments.

Note, that even though the current implementation and discussion focuses on

wave propagation problems, the method of difference potentials is capable of ad-

dressing a considerably broader range of formulations, including problems in heat

transfer, elasticity, fluid dynamics, and other areas, see for example [52].



Bibliography

[1] S. Abarbanel and A. Ditkowski. Asymptotically stable fourth-order accurate

schemes for the diffusion equation on complex shapes. J. Comput. Phys.,

133(2):279–288, 1997.

[2] I. M. Babuska and S.A. Sauter. Is the pollution effect of the FEM avoidable

for the Helmholtz equation considering high wave numbers? SIAM Journal on

Numerical Analysis, 34(6):2392–2423, 1997.

[3] G. Baruch, G. Fibich, and S. Tsynkov. High-order numerical method for the

nonlinear Helmholtz equation with material discontinuities in one space dimen-

sion. J. Comput. Phys., 227:820–850, 2007.

[4] G. Baruch, G. Fibich, S. Tsynkov, and E. Turkel. Fourth order scheme for

wave-like equations in frequency space with discontinuities in the coefficients.

Communications in Computational Physics, 5(2–4):442–455, 2009.

[5] A. Bayliss, C. I. Goldstein, and E. Turkel. On accuracy conditions for the

numerical computation of waves. J. Comput. Phys., 59(3):396–404, 1985.

[6] J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, editors. Electromag-

135



136 BIBLIOGRAPHY

netic and Acoustic Scattering by Simple Shapes. A Summa Book. Hemisphere

Publishing Corp., New York, 1987. Revised reprint of the 1969 edition.

[7] S. C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite El-

ement Methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag,

New York, second edition, 2002.

[8] S. Britt, S. Tsynkov, and E. Turkel. A compact fourth order scheme for the

Helmholtz equation in polar coordinates. J. Sci. Comput., 45(1-3):26–47, 2010.

[9] S. Britt, S. Tsynkov, and E. Turkel. Numerical simulation of time-harmonic

waves in inhomogeneous media using compact high order schemes. Commun.

Comput. Phys., 9(3):520–541, March 2011.

[10] S. Britt, S. Tsynkov, and E. Turkel. A high order numerical method for the

Helmholtz equation with non-standard boundary conditions. SIAM Journal on

Scientific Computing, 2012. [Submitted for publication].

[11] G. F. Carey, S.-S. Chow, and M. K. Seager. Approximate boundary-flux cal-

culations. Comput. Methods Appl. Mech. Engrg., 50(2):107–120, 1985.

[12] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm

in three dimensions. J. Comput. Phys., 155(2):468–498, 1999.

[13] P. G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 40 of

Classics in Applied Mathematics. Society for Industrial and Applied Mathe-

matics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-

Holland, Amsterdam; MR0520174 (58 #25001)].



BIBLIOGRAPHY 137

[14] L. Collatz. The Numerical Treatment of Differential Equations. New York:

Springer, 1966.

[15] S. Conte and C. de Boor. Elementary Numerical Analysis: An Algorithmic

Approach. McGraw-Hill, New York, third edition, 1980.

[16] R. K. Crockett, P. Colella, and D. T. Graves. A Cartesian grid embedded

boundary method for solving the Poisson and heat equations with discontinuous

coefficients in three dimensions. J. Comput. Phys., 230(7):2451–2469, 2011.

[17] A. Ditkowski and M. Sever. On the intersection of sets of incoming and outgoing

waves. Quart. Appl. Math., 66(1):1–26, 2008.

[18] Y. A. Erlangga. Advances in iterative methods and preconditioners for the

Helmholtz equation. Arch. Comput. Methods Eng., 15(1):37–66, 2008.

[19] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. A novel multigrid based pre-

conditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput.,

27(4):1471–1492 (electronic), 2006.

[20] Y. A. Erlangga and E. Turkel. Iterative schemes for high order compact dis-

cretizations to the exterior Helmholtz equation. Mathematical Modeling and

Numerical Analysis (ESAIM: M2AN), 2011. [To appear].

[21] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee. On a class of preconditioners for

solving the Helmholtz equation. Appl. Numer. Math., 50(3-4):409–425, 2004.

[22] C. Farhat, I. Harari, and L.P. Franca. The discontinuous enrichment method.

Computer Meth. in Appl. Mech. & Eng., 190:6455–6479, 2001.



138 BIBLIOGRAPHY

[23] C. Farhat, R. Tezaur, and J. Toivanen. A domain decomposition method for

discontinuous Galerkin discretizations of Helmholtz problems with plane waves

and Lagrange multipliers. International Journal for Numerical Methods in En-

gineering, 78:1513–1531, 2009.

[24] W. Fong and E. Darve. The black-box fast multipole method. J. Comput.

Phys., 228(23):8712–8725, 2009.

[25] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.

Comput. Phys., 73(2):325–348, 1987.

[26] M. Gunzburger and J. Peterson. Reduced-order modeling of complex systems

with multiple system parameters. In Large-scale scientific computing, volume

3743 of Lecture Notes in Comput. Sci., pages 15–27. Springer, Berlin, 2006.

[27] B. Gustafsson. The convergence rate for difference approximations to general

mixed initial-boundary value problems. SIAM Journal on Numerical Analysis,

18(2):179–190, 1981.

[28] Bertil Gustafsson. The convergence rate for difference approximations to mixed

initial boundary value problems. Mathematics of Computation, 29(130):396–

406, 1975.

[29] T. Hagstrom. Radiation boundary conditions for the numerical simulation of

waves. In A. Iserlis, editor, Acta Numerica, volume 8, pages 47–106, Cambridge,

1999. Cambridge University Press.

[30] William D. Henshaw. A high-order accurate parallel solver for Maxwell’s equa-



BIBLIOGRAPHY 139

tions on overlapping grids. SIAM J. Sci. Comput., 28(5):1730–1765 (electronic),

2006.

[31] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods,

volume 54 of Texts in Applied Mathematics. Springer, New York, 2008. Algo-

rithms, analysis, and applications.

[32] E. H. Hirschel and W. Kordulla. Shear Flow in Surface-Oriented Coordinates,

volume 4 of Notes on Numerical Fluid Mechanics. Friedr. Vieweg & Sohn

Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1981-1986.

[33] R. Hixon and E. Turkel. Compact implicit MacCormack-type schemes with

high accuracy. J. Comput. Phys., 158(1):51–70, 2000.

[34] R. Holland. Pitfalls of staircase meshing. IEEE Trans. Electromagnetic Com-

patibility, 35:434–439, 1993.

[35] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering, volume 132 of

Applied Mathematical Sciences. Springer, 1998.

[36] H. Johansen and P. Colella. A Cartesian grid embedded boundary method for

Poisson’s equation on irregular domains. J. Comput. Phys., 147(1):60–85, 1998.

[37] R. J. LeVeque and Z. Li. The immersed interface method for elliptic equations

with discontinuous coefficients and singular sources. SIAM J. Numer. Anal.,

31(4):1019–1044, 1994.

[38] Z. Li and K. Ito. The Immersed Interface Method, volume 33 of Frontiers in

Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),



140 BIBLIOGRAPHY

Philadelphia, PA, 2006. Numerical solutions of PDEs involving interfaces and

irregular domains.
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תקציר

המופרד קבוע, בהכרח לא אך חלק, טווח של גדולים אזורים פני על גלים התפשטות חוקרים אנו

ומשול הפרד בשיטת משתמשים אנו שרירותית. צורה בעלי ממשקים ידי על תחומים לתת

פתרונות של מסט מורכב לבעיה הפתרון ויוצאים. נכנסים לגלים הגל חלוקת על המבוססת

בעיית של הבחירה תחום. תת לכל תלוי בלתי באופן מוגדרת עזר בעיית עזר. לבעיית פרטיים

החדשה השיטה וחסכוני. קל נומרי פתרון המאפשרת בצורה לנסחה ניתן יחסית: גמישה היא עזר

קשר ללא ופולריות, קרטזיות רשתות כגון ומובנות, פשוטות נומריות ברשתות רק משתמשת שלנו

משתמשת היא חלקים, באזורים הממשקים. צורת או הבעיה של התחום גבולות של לצורתם

נוספים שפה תנאיי דורשים אינם אשר גבוהה דיוק מסדר קומפקטית סופיים הפרשים בסכמת

הרשת על יושבים אינם אשר ממשקים עצמה. הדיפרנציאלית למשוואה הנדרשים אלו מלבד

.[74] ההפרשיים הפוטנציאלים ושיטת קלדרון של אופרטור ידי על מטופלים הנומרית

מטפל הוא חשובים: יתרונות מספר ההפרשיים הפוטנציאלים ולשיטת קלדרון של לאופרטור

היא המורכבות ואילו כלליים שפה ותנאי משתנים מקדמים עקומים, וממשקים בגבולות בקלות

שהמתודולוגיה הוא העיקרי היתרון רגילה. מובנית רשת על הסופיים, ההפרשים סכימת של זה

יותר. מסורתיות בגישות הכרוכים הקשיים על ומתגברת גבוה וסדר דיוק מספקת הזו





לילדיי

על טורקל אלי לפרופסור העמוקה והערכתי תודתי את להביע ברצוני

ובמהלך זה מחקר במהלך הרבה והתמיכה המתמדת המעורבות הסבלנות,

פעולה. ושיתוף היכרות שנות שבע

ייעוץ הדרכה, על צנקוב סמיון לפרופסור תודה אסיר אני כן, כמו

קרוליינה. צפון באוניברסיטת נשכחת בלתי התמחות עבור במיוחד וידידות,

נעשת. הייתה לא לעולם זו עבודה שלו והעידוד העזרה ללא

התומכים, להוריי והאהבה. הסבלנות על למשפחתי מודה אני כמובן,

יכול לא לעולם זה מחקר בלעדיהם המקסימים. והילדים המתחשבת אישתי

כמשמעו). (פשוטו להתקיים היה

בשבילי "שם" שהיו והחברים המשפחה בני לכל תודתי את להביע ברצוני

לעיל. מופיע לא שמם אך זו, ארוכה בתקופה





המנחים בהדרכת נעשתה זו עבודה

תל־אביב אוניברסיטת טורקל, אלי פרופסור

קרוליינה צפון אוניברסיטת צנקוב, סמיון ופרופסור
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סאקלר ובברלי ריימונד שם על מדויקים למדעים הפקולטה

המתמטיקה למדעי ביה"ס

שימושית למתמטיקה החוג

גלים עבור גבוה מסדר נומריות שיטות

חורגים וממשקים רגילות ברשתות שימוש תוך
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