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a b s t r a c t

The method of difference potentials was originally proposed by Ryaben’kii, and is a
generalized discrete version of the method of Calderon’s operators. It handles non-
conforming curvilinear boundaries, variable coefficients, and non-standard boundary
conditions while keeping the complexity of the solver at the level of a finite-difference
scheme on a regular structured grid. Compact finite difference schemes enable high order
accuracy on small stencils and so require no additional boundary conditions beyond those
needed for the differential equation itself. Previously, we have used difference potentials
combined with compact schemes for solving transmission/scattering problems in regions
of a simple shape. In this paper, we generalize our previous work to incorporate smooth
general shaped boundaries and interfaces, including a formulation that involves multiple
scattering.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We propose a high order accurate numerical method for the solution of two-dimensional boundary value problems of
wave analysis. It applies to a wide variety of physical formulations that involve the transmission and scattering of acoustic
and electromagnetic waves. In the current paper, we solve the scalar wave propagation problem in the frequency domain
and concentrate on applications to general shaped boundaries and interfaces.
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It is well known that high order accuracy is of central importance for the numerical simulation of waves because of the
pollution effect [1–3]. For both finite difference and finite element approximations, the numerical phase velocity of thewave
depends on the wavenumber k, so a propagating packet of waves with different frequencies gets distorted in the simulation.
Furthermore, the numerical error is proportional to hpkp+1, where h is the grid size and p is the order of accuracy of the
chosen approximation. So the number of points per wavelength needed for a given accuracy increases as k1/p. Hence, higher
order accurate approximations are very beneficial, as they reduce the effect of the pollution.

Our methodology for solving the Helmholtz equation combines compact equation-based high order accurate finite
difference schemes [4,5]with themethod of difference potentials by Ryaben’kii [6,7].We have chosen this approach because
we can take advantage of the simplicity and efficiency of high order finite difference schemes on regular structured grids
(such as Cartesian or polar) and at the same time are able to handle non-conforming curvilinear boundaries and interfaces
with no deterioration of accuracy due to staircasing.

The technique we propose presents a viable alternative to finite elements. Unlike finite differences, finite elements are
designed for handling sophisticated geometries. However, high order accurate finite element approximations can be built for
arbitrary boundaries only in fairly sophisticated and costly algorithms with isoparametric elements. These methods require
grid generation which can be nontrivial for complex geometries and interfaces. In discontinuous Galerkin, discontinuous
enrichment, and generalized finite element methods, high order accuracy also requires additional degrees of freedom.
Yet, we are interested in predominantly smooth problems: geometrically large regions with smooth material parameters
separated by several interface boundaries, e.g., scatterers in large volumes of free space. The solution of such problems is
smooth between the interfaces (as long as the latter are sufficiently smooth in their own right) and so high order finite
elements carry a substantial redundancy. The latter entails additional computational costs that we would like to avoid.

Therefore, we use compact finite difference schemes [8,9,4,5,10–12] to achieve high order accuracy. As any finite
difference scheme, a compact scheme requires only one unknown per grid node, so there are no extra degrees of freedom.
At the same time, unlike the standard high order accurate schemes compact schemes do not need extended stencils. In
particular, equation-based compact schemes [4,5] use the equation itself to eliminate the distant stencil points. These high
order schemes reduce pollution while keeping the treatment of the boundary conditions simple, since the order of the
resulting difference equation is equal to the order of the differential equation. Hence, no additional numerical boundary
conditions are required.

The previous stages of development of our computational approach are reported in a series of papers [13–18]. The
method of difference potentials [6,7] furnishes the required geometric flexibility. Specifically, it applies to a discretization
on a regular structured grid and allows for non-conforming curvilinear boundaries with no loss of accuracy. Our technique
provides an attractive substitute for the method of boundary elements, because it is not limited to constant coefficients and
does not involve singular integrals.

The method of difference potentials is a discrete analog of the method of Calderon’s operators [19,20,7]. It has the
following key advantages:

• Maximum generality of boundary conditions. Any type of boundary conditions can be handledwith equal ease, including
mixed, nonlocal and interfaces.

• The problem is discretized on a regular structured grid, yet boundaries and interfaces can have an arbitrary shape and
need not conform to the grid. This causes no loss of accuracy due to staircasing.

• Variable coefficients, or equivalently, heterogeneous media, are easily handled. The constructs of Calderon’s operators
remain essentially unchanged.

• The methodology does not require numerical approximation of singular integrals. The inverse operators used for
computing the discrete counterparts to Calderon’s potentials and projections, involve no convolutions or singularities
and allow fast numerical computation. The well-posedness of the discrete problem is guaranteed.

Our previous papers on the subject [13–18] discussed model obstacles that were either circles or ellipses. The objective
of this study is to include scatterers with more general smooth shapes and to allow for multiple scattering. The numerical
results that we present demonstrate that this objective has been successfully achieved. Our algorithm attains the design
fourth order accuracy when solving the transmission/scattering problems for a variety of non-conforming shapes, including
the case of heterogeneous media.

1.1. Outline of the paper

In Section 3, we provide a brief account of the compact high order accurate equation-based schemes [4,5,8,9] for solving
the variable coefficient Helmholtz equation. In Section 4, we introduce Calderon operators and their discrete counterparts.
We briefly discuss their key properties. In Section 5 we discuss the coordinates associated with the interface curve and
the equation-based extension. In Section 6, we present the results of computations confirming the high order accuracy for
non-conforming boundaries. Finally, Section 7 contains conclusions.

2. Formulation of the problem

The most general problem formulation that we study in the paper involves embedded regions and allows for multiple
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Fig. 1. Schematic for the transmission/reflection problem that involves multiple scattering.

scattering, see Fig. 1. Let Γ1 and Γ2 be two non-intersecting smooth closed curves inside one another. They partition the
plane R2 into three regions: the exterior region Ω0, which is outside Γ1, the intermediate region Ω1, which is in-between
Γ1 and Γ2, and the interior regionΩ2, which is inside Γ2. Then, ∂Ω0 = Γ1, ∂Ω1 = Γ1 ∪ Γ2, and ∂Ω2 = Γ2.

We consider the time-harmonic waves propagating in an unbounded heterogeneous medium defined by the domains
Ω0,Ω1, andΩ2. The propagation is governed by the scalar Helmholtz equation. In the exterior domainΩ0, the wavenumber
k in the Helmholtz equation (which is determined by the local propagation speed, k = ω/c) is assumed constant, whereas
in the intermediate domainΩ1, as well as in the interior domainΩ2, the wavenumber is allowed to vary smoothly:

k = k(x) =

k0, x ∈ Ω0,
k1(x), x ∈ Ω1,

k2(x), x ∈ Ω2 = R2
\ (Ω1 ∪Ω2).

(1)

At the boundaries Γ1 and Γ2, the wavenumber may undergo jump discontinuities, so that altogether the function k = k(x)
of (1) is piecewise smooth.

The Helmholtz equation for the medium with k(x) given by (1) is written in the form of three individual sub-equations
that correspond to the regions where the wavenumber varies smoothly:

L2u
def
= 1u(x)+ k22(x)u =f2(x), x ∈ Ω2, (2a)

L1u
def
= 1u(x)+ k21(x)u =f1(x), x ∈ Ω1, (2b)

L0u
def
= 1u(x)+ k20u =f0(x), x ∈ Ω0. (2c)

To ensure uniqueness, additional conditions must be specified at the interfaces Γ1 and Γ2 where the coefficient k undergoes
jumps, as well as at infinity. We require that the function u and its first normal derivative be continuous across Γ1 and Γ2,
and at infinity we impose the Sommerfeld radiation condition. The solution u of Eqs. (2) is assumed driven by the given
incident plane wave u(inc) = e−ik·x, where |k| = k0, as well as by the source terms fq(x), q ∈ {0, 1, 2}.

For the numerical experiments of Section 6 that do not involve multiple scattering, the forgoing problem formulation is
simplified. The interfaceΓ2 and the separate interior domainΩ2 are eliminated, so thatΩ0 = R2

\Ω1 andΓ1 = ∂Ω1 = ∂Ω0.
The domainΩ1 becomes simply connected, and the wavenumber k = k1(x) varies smoothly across the entireΩ1 Then, we
are solving a typical transmission/reflection problem.

3. Compact high order accurate equation-based schemes

3.1. Scheme for the interior and intermediate problems

For the interior problem formulated onΩ2 and the intermediate problem formulated onΩ1, we consider the Helmholtz
equation with a variable wavenumber (see Eqs. (2a), (2b)):

Lqu ≡
∂2u
∂x2

+
∂2u
∂y2

+ k2(x, y)u = f (x, y), q ∈ {1, 2}, (3)

where k(x, y) = kq(x, y), see (1), and f (x, y) = fq(x, y).
We introduce a uniform in each direction Cartesian grid with the sizes hx and hy and use the following equation-based

compact scheme:

ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1

h2
y

+ (k2u)i,j
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12
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12


1
h2
x


ui+1,j+1 − 2ui+1,j + ui+1,j−1

h2
y

− 2
ui,j+1 − 2ui,j + ui,j−1

h2
y

+
ui−1,j+1 − 2ui−1,j + ui−1,j−1

h2
y



+
h2
x

12
(k2u)i+1,j − 2(k2u)i,j + (k2u)i−1,j

h2
x

+
h2
y

12
(k2u)i,j+1 − 2(k2u)i,j + (k2u)i,j−1

h2
y

=
h2
x

12
fi+1,j − 2fi,j + fi−1,j

h2
x

+
h2
y

12
fi,j+1 − 2fi,j + fi,j−1

h2
y

+ fi,j. (4)

Details of the derivation and accuracy analysis can be found in [8,9,21,5]. The scheme yields fourth order accuracy for
smooth solutions. Even higher accuracy can be achieved using the same compact stencils. In [21],we have constructed a sixth
order accurate equation-based scheme for the Helmholtz equation with a variable wavenumber k. Unlike regular schemes,
the compact scheme (4) employs two stencils. The nine-node 3 × 3 stencil {(i, j), (i ± 1, j), (i, j ± 1), (i ± 1, j ± 1)} is used
for the discrete solution ui,j, and the five-node stencil {(i, j), (i ± 1, j), (i, j ± 1)} is used for the source function fi,j. Since
the left-hand side stencil is 3 × 3, the compact scheme (4) does not require additional boundary conditions beyond those
needed for the original differential equation. Dirichlet boundary conditions are straightforward to set; Neumann boundary
conditions can also be included without expanding the stencil [9,21].

3.2. Scheme for the exterior problem

For the exterior problem formulated on Ω0, we consider the Helmholtz equation with a constant wavenumber k = k0
(see Eq. (2c)):

L0u =
1
r
∂

∂r


r
∂u
∂r


+

1
r2
∂2u
∂θ2

+ k2u = f (r, θ). (5)

The equation-based compact scheme is built on a uniform polar grid with the sizes hr and hθ :

1
rm

1
hr


rm+1/2

um+1,l − um,l

hr
− rm−1/2

um,l − um−1,l

hr


+

1
r2m

um,l+1 − 2um,l + um,l−1

h2
θ

−
h2
r

12


∂2f
∂r2


m,l

− k2
um+1,l − 2um,l + um−1,l

h2
r



+
1

12h2
θ


1

r2m+1


um+1,l+1 − 2um+1,l + um+1,l−1


−

2
r2m


um,l+1 − 2um,l + um,l−1


+

1
r2m−1


um−1,l+1 − 2um−1,l + um−1,l−1


(6)

−
h2
r

12rm


∂ f
∂r


m,l

− k2
um+1,l − um−1,l

2hr
−

1
2hrh2

θ


1

r2m+1


um+1,l+1 − 2um+1,l + um+1,l−1


−

1
r2m−1


um−1,l+1 − 2um−1,l + um−1,l−1



−
h2
r

12r2m


fm,l − k2um,l −

1
r2mh

2
θ


um,l+1 − 2um,l + um,l−1


+

hr

12r3m


um+1,l − um−1,l


−

h2
θ

12


∂2f
∂θ2


m,l

− k2
um,l+1 − 2um,l + um,l−1

h2
θ



+
1

12h2
r rm


rm+1/2(um+1,l+1 − um,l+1)− rm−1/2(um,l+1 − um−1,l+1)

− 2

rm+1/2(um+1,l − um,l)− rm−1/2(um,l − um−1,l)


+ rm+1/2(um+1,l−1 − um,l−1)− rm−1/2(um,l−1 − um−1,l−1)


+ k2um,l = fm,l.

Scheme (6) yields fourth order accuracy for smooth solutions; it is analyzed and tested in [4]. Similarly to scheme (4),
the compact scheme (6) also employs two stencils. The stencil for the discrete solution um,l is nine-node: {(m, l), (m ±

1, l), (m, l ± 1), (m ± 1, l ± 1)}, and the stencil for the right-hand side fm,l is five-node: {(m, l), (m ± 1, l), (m, l ± 1)}.
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Scheme (6) requires no additional boundary conditions beyond those needed for the original differential equation, since the
left-hand side stencil is 3×3. Neumann boundary conditions for scheme (6) can be set using the same 3×3 stencil, see [13].

4. Difference potentials and projections

4.1. Auxiliary problem

The original domainsΩ2,Ω1 andΩ0, see (2), may have a general irregular shape. This could make setting the boundary
conditions for schemes (4) and (6), respectively, difficult, given that both schemes are constructed on regular structured
grids. The method of difference potentials, however, allows us to completely circumvent those difficulties.

We enclose each domain Ωj, j ∈ {0, 1, 2}, within an auxiliary domain Ωj: Ωj ⊂ Ωj. On the domain Ωj, we formulate a
special auxiliary problem (AP) for the corresponding inhomogeneous Helmholtz equation. The key requirement of the AP
is that it should have a unique solution for any right-hand side defined on Ωj. It can otherwise be formulated arbitrarily
except that the exterior AP needs to include an exact or approximate counterpart of the Sommerfeld radiation condition.
Hence, we choose the AP so that it is easy to solve numerically. In particular, we select the auxiliary domains of simple
shape, rectangular for Ω2 and Ω1, and annular for Ω0. In the method of difference potentials, the AP is used for computing
the discrete counterparts of Calderon’s operators [19,20]. While the operators themselves depend on the choice of the AP,
the actual solution u of the problem of interest, e.g., the interface problem (2), is not affected [7].

4.1.1. Interior and intermediate AP
The interior and intermediate auxiliary problems are formulated using Cartesian coordinates on the rectangular domainΩq = [xq0, x

q
1] × [yq0, y

q
1], q ∈ {1, 2}:

Lqu = gq, x ∈ Ωq,

u = 0, y ∈ {yq0, y
q
1},

∂u
∂x

= iµu, x = xq0,

−
∂u
∂x

= iµu, x = xq1.

(7)

In doing so, we are assuming that the variable coefficient kq is defined not only onΩq, but on the larger domain Ωq as well.
The AP (7) is approximated by means of the compact scheme (4) and then solved by LU decomposition. In Section 4.2, we
will see that the algorithm requires repeated solution of the AP for one and the same operator and different right-hand
sides. This allows us to perform the LU decomposition only once and thus achieve substantial gains in performance. In the
particular case where kq = const, the AP (7) can be solved using the separation of variables and FFT. Note that the complex
Robin boundary conditions imposed at the left and right boundaries of the auxiliary domain Ωq, q ∈ {1, 2}, are not intended
to represent any physical behavior. They merely make the spectrum of the AP complex and hence ensure the uniqueness
of the solution. These boundary conditions can be approximated with fourth order accuracy without having to extend the
compact stencil of the scheme (4), see [5, Section 4.2].

Let Nq, q ∈ {1, 2} be a uniform Cartesian grid on the rectangle Ωq:

Nq =

(xqm, y

q
n) | xqm = mhq, yqn = nhq, m = 0, . . . ,Mq, n = 0, . . . ,Nq


.

Creating a discrete analog of the boundary ∂Ωq is central to our method since ∂Ωq is not aligned with the Cartesian grid.1
The following subsets of the Cartesian grid Nq are used for this purpose. Let Mq ⊂ Nq be the set of only interior nodes of the
rectangular domain Ωq. Thus Mq contains all the nodes of Nq except for those along the boundary edges of the rectangle:

Mq =

(xqm, y

q
n) | xqm = mhq, yqn = nhq, m = 1, . . . ,Mq − 1, n = 1, . . . ,Nq − 1


.

Notice, that if we form a set which contains all of the nodes ‘‘touched’’ by the 9-point compact stencil operating on the set
Mq, then this set will coincide with Nq. It is for this reason that the right-hand side gq

m,n of the discrete AP is defined only on
the interior nodes, i.e., on Mq. We now distinguish those nodes which are within the domainΩq from those which are not
inΩq. For q = 1, being inΩ1 means in-between the curves Γ1 and Γ2; for q = 2, being inΩ2 means inside the curve Γ2. Let
all those nodes which belong toΩq be denoted by M+

q ⊂ Mq, and those which do not belong toΩq, except for the edges of
the auxiliary domain, by M−

q ⊂ Mq. Next, let the collections of all nodes touched by the 9-point compact stencil operating
on the nodes of M+

q and M−
q be referred to as N+

q and N−
q , respectively. Then, there is a nonempty intersection between the

sets N+
q and N−

q . This is referred to as the grid boundary:

γq = N+

q ∩ N−

q , q ∈ {1, 2}. (8)

1 Recall, ∂Ω2 = Γ2 and ∂Ω1 = Γ2 ∪ Γ1 , see Fig. 1.
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(a) • — M+

2 , ⃝ — N+

2 . (b) • — M−

2 , ⃝ — N−

2 . (c) ⃝ — γ2 .

Fig. 2. Interior and exterior grid subsets and the grid boundary for the interior sub-problem.

(a) • — M+

1 , ⃝ — N+

1 . (b) • — M−

1 , ⃝ — N−

1 . (c) ⃝ — γ1 .

Fig. 3. Interior and exterior grid subsets and the grid boundary for the intermediate sub-problem.

Examples for all the foregoing grid sets are shown in Figs. 2 and 3. Let us emphasize that the grid sets for different values
of q (q = 1 and q = 2) are constructed completely independently; already at the very first step the grids N1 and N2 can be
different. As such, the interior part of γ1, see Fig. 3(c), may but does not have to coincide with γ2 shown in Fig. 2(c).

4.1.2. Exterior AP
The domain of the exterior problem isΩ0 = R2

\ (Ω1 ∪Ω2). The corresponding auxiliary domain Ω0 is chosen to be the
annulus {r0 6 r ≡ |x| 6 r1} that contains the interface curve Γ1. Then, we formulate the exterior AP as follows:

L0u = g0,
u = 0,

Tu = 0,

r0 < r = |x| < r1,
r = r0,
r = r1.

(9)

The operator boundary condition Tu = 0 in (9) is equivalent to the Sommerfeld radiation condition, but set at the finite
boundary r = r1 rather than at infinity. The operator T can be explicitly constructed in the transformed space after the
variables in problem (9) have been separated by means of the azimuthal Fourier transform. In doing so, the entire AP (9) is
also solved by separation of variables, which leads to a very efficient numerical procedure, see [4, Section 4].

We denote by N0 the uniform polar grid on the annulus Ω0:
N0 =


(rm, θn) | rm = mh, θn = nh, m = 0, . . . ,M0, n = 0, . . . ,N0


.

A discrete analog of the boundary curve Γ1 = ∂Ω0 for the polar grid is defined similarly to that for the Cartesian grid.
Namely, let M0 ⊂ N0 be the set of only interior nodes of the polar domain Ω0:

M0 =

(rm, θn) | rm = mh, θn = nh, m = 1, . . . ,M0 − 1, n = 1, . . . ,N0 − 1


.

Let all of those nodes which are confined within the continuous boundary Γ1 be denoted by M+

0 ⊂ M0, and those which
are outside, except for the edges of the auxiliary domain, by M−

0 ⊂ M0. Next, let the collections of all nodes touched by the
9-point compact stencil operating on the nodes of M+

0 and M−

0 be referred to as N+

0 and N−

0 , respectively. The intersection
of the sets N+

0 and N−

0 is nonempty. The grid boundary is given by

γ0 = N+

0 ∩ N−

0 . (10)
The polar grid sets are shown in Fig. 4.
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(a) • — M+

0 , ⃝ — N+

0 . (b) • — M−

0 , ⃝ — N−

0 . (c) ⃝ — γ0 .

Fig. 4. Interior and exterior grid subsets and the grid boundary for the exterior sub-problem.

4.1.3. The grid boundary γ for general shapes
The key factor in obtaining γq by means of formulae (8) or (10) is the decision whether a given grid node is interior or

exterior to the body enclosed by a given closed curve Γ , which can be either Γ1 or Γ2. This helps us define the sets M+
q , M

−
q ,

q ∈ {0, 1, 2}, which, in turn, are used to obtain the sets N+
q and N−

q , and hence, the set γq.
Regardless of the choice of grid such a decision is simple for a circle with a given radius R0 centered at the origin,

e.g., M+
q = {(x, y)|


x2 + y2 6 R0}. It is similarly simple for ellipses of a given eccentricity e0 centered at the origin,

e.g., M+
q = {(x, y)|Re acosh(x + iy) 6 acosh e−1

0 }.
We now describe the procedure for a general shaped boundary Γ . Let R = (Rx(t), Ry(t)) be the parameterization of a

star-shaped interface/boundary Γ . Let p = (x, y) be a grid point. In order to decide whether p is exterior or interior with
respect to Γ , one compares the magnitude of the vector from the origin to the point p and the value of R in the same
direction/angle θ . The curve R is a known function of the parameter t where in general t ≠ θ . To match between t and θ
one uses a root finding algorithm, e.g., Newton–Raphson, to solve

cos
y
x

= cos
Ry(t)
Rx(t)

(11)

for t . Once the matching is found the point p = (x, y) is interior if it satisfies
x2 + y2 <


R2
x(t(θ))+ R2

y(t(θ)),

otherwise p is exterior.

4.2. Difference potentials

Wenow provide a brief description of the difference potentials and projections, while referring the reader to [7,13,14,22]
for a comprehensive account of the methodology. In particular, the well-posedness is discussed in [13, Section 3.1.4] and
in [7, Part I]. The accuracy was investigated by Reznik [23], and some results are outlined in [13, Section 4.4]. The complexity
is analyzed in [13, Section 4.6]. Solutions of some exterior and interface problems are presented in [14]. Algorithms and
examples can be found in [22].

Let ξγq , q ∈ {1, 2}, be a function specified at the grid boundary γq of (8). Let wq be a grid function on Nq that satisfies
the discretized boundary conditions of the interior AP (7) at ∂Ωq, and also wq

|γq = ξγq ⇔ Tr(h)γq w
q

= ξγq . The difference
potential with density ξγq is defined as

PN+
q
ξγq = wq

− G(h)q


L(h)q wq


M+

q


, n ∈ N+

q , (12)

where L(h)q is the discrete counterpart of the continuous operator Lq of (7) or (3) and G(h)q is its inverse obtained by solving
the interior difference AP of Section 4.1.1 on the grid Nq. Accordingly, the difference boundary projection is given by
Pγqξγq = Tr(h)γq PN+

q
ξγq . The key property of the projection Pγq is that a given ξγq satisfies the difference boundary equation

with projection (BEP):

Pγqξγq + Tr(h)γq G(h)q f (h)q = ξγq (13)

iff there exists u on N+
q that satisfies Eq. (4) on M+

q and such that Tr(h)u = ξγq . Note, that f
(h)
q in formula (13) is the discrete

source term of the Helmholtz equation after the application of the second, i.e., five-node, stencil of the compact scheme, see
the right-hand side of Eq. (4).
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The constructs of discrete operators for the exterior domain exploit the grid sets and the auxiliary problem introduced
in Section 4.1.2. The potential on N−

0 is given by

PN−

0
ξγ0 = w − G(h)0


L(h)0 w


M−

0


, (14)

and the projection on γ0 is defined as Pγ0ξγ0 = Tr(h)γ0 PN−

0
ξγ0 , so that the discrete exterior BEP becomes

Pγ0ξγ0 + Tr(h)γ0 G(h)0 f (h)0 + (I − Pγ0)Tr
(h)
γ0

u(inc) = ξγ0 . (15)

The method of difference potentials requires no approximation of the boundary or interface conditions on the grid, and
avoids unwanted staircasing effects [24,25]. Let ξΓ = (ξ0, ξ1, ξ2, ξ3)|Γ be the unknown vector function defined at the
continuous boundary Γ . Unlike in Section 4.1.3 where Γ could be either Γ1 or Γ2, in this section Γ = Γ1 ∪ Γ2, i.e. the
union of both interfaces. We think of ξΓ as of the trace of the solution u and its first normal derivative. Suppose ξΓ has an
expansion with respect to some basis {ψn} (Fourier or Chebyshev) chosen on Γ :

ξΓ = (ξ0, ξ1, ξ2, ξ3)

Γ

=

M
n=−M

c(0)n (ψn, 0, 0, 0)  
(ξ0,0)

+

M
n=−M

c(1)n (0, ψn, 0, 0)  
(0,ξ1)

+

M
n=−M

c(2)n (0, 0, ψn, 0)  
(ξ2,0)

+

M
n=−M

c(3)n (0, 0, 0, ψn),  
(0,ξ3)

(16)

where c(0)n , c(1)n , c(2)n and c(3)n are the coefficients to be determined. The summation in (16) can be taken finite because
for sufficiently smooth ξΓ the corresponding Fourier or Chebyshev series converges rapidly. Hence, even for relatively
small M the spectral representation (16) provides the accuracy beyond the one that can be obtained on the grid inside
the computational domain.

Using Taylor’s formula with equation-based derivatives [23,13,16], we extend ξΓ from Γ to the nodes of γq, q ∈ {1, 2},
located nearby:

ξγ2 =Ex(2)ξΓ = Ex(2)H (ξ2, ξ3)

Γ

+ Ex(2)I f2, (17)

ξγ1 =Ex(1)ξΓ = Ex(1)H (ξ0, ξ1, ξ2, ξ3)

Γ

+ Ex(1)I f1. (18)

Similarly for the exterior part, we introduce another equation-based Taylor extension:

ξγ0 = Ex(0)ξΓ = Ex(0)H (ξ0, ξ1)

Γ

+ Ex(0)I f0. (19)

In formulae (17), (18), and (19), the operators Ex(q)H and Ex(q)I , q ∈ {0, 1, 2}, denote the homogeneous and inhomogeneous
part of the overall extension, respectively. Taking ξΓ in the form (16), we rewrite (17)–(19) as follows:

ξγ2 = Ex(2)ξΓ =

M
n=−M

c(2)n Ex(2)H (0, 0, ψn, 0)+

M
n=M

c(3)n Ex(2)H (0, 0, 0, ψn)+ Ex(2)I f2,

ξγ1 = Ex(1)ξΓ =

M
n=−M

c(0)n Ex(1)H (ψn, 0, 0, 0)+

M
n=M

c(1)n Ex(1)H (0, ψn, 0, 0)

+

M
n=M

c(2)n Ex(1)H (0, 0, ψn, 0)+

M
n=M

c(3)n Ex(1)H (0, 0, 0, ψn)+ Ex(1)I f1,

and

ξγ0 = Ex(0)ξΓ =

M
n=M

c(0)n Ex(0)H (ψn, 0, 0, 0)+

M
n=M

c(1)n Ex(0)H (0, ψn, 0, 0)+ Ex(0)I f0.

Then, we substitute extensions (17), (18) into the BEP (13) and extension (19) into the BEP (15), which yields a system of
linear equations to be solved with respect to the coefficients of (16):Q (0,2) Q (1,2) 0 0

Q (0,1) Q (1,1) Q (2,1) Q (3,1)

0 0 Q (2,0) Q (3,0)

 c =

 −Tr(h)γ2 G(h)2 f (h)2 −

Pγ2 − I


Ex(2)I f2

−Tr(h)γ1 G(h)1 f (h)1 −

Pγ1 − I


Ex(1)I f1

−Tr(h)γ0 G(h)0 f (h)0 −

Pγ0 − I


(Ex(0)I f0 − Tr(h)γ0 u(inc))

 . (20)
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In formula (20),

c =

c(0), c(1), c(2), c(3)

T
=


c(0)
−M , . . . , c

(0)
M , c(1)

−M , . . . , c
(1)
M , c(2)

−M , . . . , c
(2)
M , c(3)

−M , . . . , c
(3)
M

T
(21)

and the columns of sub-matrices Q (p,q), p ∈ {0, 1, 2, 3}, q ∈ {0, 1, 2}, are given by

Q (p,q)
n =


Pγq − I


Ex(q)H ψ

p
n,

where ψ0
n = (ψn, 0, 0, 0), ψ1

n = (0, ψn, 0, 0), ψ2
n = (0, 0, ψn, 0) and ψ3

n = (0, 0, 0, ψn), and n = −M, . . . ,M . The number
of rows in each matrix Q (p,q) is equal to the number of nodes |γq| in the grid boundary γq, q ∈ {0, 1, 2}. Hence, the overall
vertical dimension of the matrix on the left-hand side of (20) is equal to |γ0| + |γ1| + |γ2|.

We emphasize that since the same ξΓ appears in all Eqs. (17), (18), and (19), then the interface condition that requires
the continuity of the solution u and its normal derivative acrossΓ (see the beginning of Section 3) is automatically enforced.

System (20) is typically overdetermined. It is solved with respect to c of (21) in the sense of least squares using QR
decomposition. We note that even though the number of equations in system (20) exceeds the number of unknowns, its
least squares solution is ‘‘almost classical’’ in the sense that the residual of (20) at the minimum is small and converges to
zero as the grid size decreases. Finally, once ξΓ has been obtained in the form (16), we apply the extension operators (17),
(18), and (19) once again and then compute the discrete interior and exterior solutions as the difference potentials (12) and
(14), respectively.

The algorithm described in this section is simplified in the case of plain transmission/reflection problems that involve no
multiple scattering. In this case, we have only two complementary domains, Ω1 and Ω0 = R2

\ Ω1, and one interface Γ1
separating them. The corresponding simplification is straightforward.

5. Coordinates associated with a curve and equation-based extension

The extension operators (17), (18), and (19) are of key significance for the application of the method of difference
potentials. In this section, we construct these equation-based extensions on an arbitrarily shaped, yet smooth, simple closed
interface curve Γ . This curve can be thought of as either Γ1 or Γ2 (similarly to Section 4.1.3). It is most natural to describe
the extension in terms of the arc length parameterization of Γ . On the other hand, for a generally shaped curve it is often
impossible to analytically obtain its arc length parameterization. Therefore, inmany cases, it might be convenient to employ
a different parameterization than arc length. Then, one would use the chain rule to obtain the required normal derivatives.

5.1. Curvilinear coordinates

Assume that Γ is parameterized by its arc length s:

Γ = {R(s) = (Rx(s), Ry(s))|0 6 s 6 S},

where R is the radius-vector that traces the curve. Assume, for definiteness, that as s increases the point R(s) moves
counterclockwise along Γ . The unit tangent (τ) and the unit normal (ν) vectors to Γ are defined as

τ = τ(s) =
dR
ds

and ν = (νx, νy) = (τy,−τx). (22)

Given a counterclockwise parameterization R = R(s), the normal ν always points outward with respect to the domainΩ1.
Hence, the pair of vectors (ν, τ) always has a fixed right-handed orientation in the plane.

The relation between the tangent τ, the normal ν, and the curvature ζ of the curve Γ is given by the Frenet formula:

dτ
ds

= ζν. (23)

The vector dτ
ds is directed toward the center of curvature, i.e., it may point either toward Ω1 or away from Ω1 (i.e, toward

Ω0) depending on which direction the curve Γ bends. Since ν has a fixed orientation, the curvature ζ = ζ (s) in formula
(23) should be taken with the sign (see, e.g., [26, Part 1]):

ζ (s) =


dτds

 , if
dτ
ds

· ν > 0,

−

dτds
 , if

dτ
ds

· ν < 0.
(24)

To define the coordinates associated with the curve Γ we take into account that the shortest path from a given node that
belongs to the grid boundary γ1 or γ0 to the curve Γ is along the normal. Denote the value of the parameter of the curve at
the foot of this normal as s, and the distance between the original point and the foot of the normal as n, see Fig. 5. As the
position of the point may be on either side of the curve, the value of the distance n is taken with the sign: n > 0 corresponds
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Fig. 5. New coordinates (n, s) and equation-based extension.

to the positive direction ν, i.e., to the exterior ofΩ1 (towardΩ0), and n < 0 corresponds to the negative direction of ν, i.e., to
the interior ofΩ1. The pair of numbers (n, s) provides the orthogonal coordinates that identify the location of a given point
on the plane.

For a general shape of the boundary Γ the coordinates (n, s) may be prone to some ambiguity, as multiple shortest
normals may exist for some of the nodes. Therefore, the multi-valued distance function at such nodes is non-differentiable
with respect to the arc length s. The multiple shortest distances for a given node may occur when the minimum radius of
curvature R̄ = mins R(s) is of order h since the coordinates (n, s) are used only for the points of the grid boundary γ which
are all about one grid size h away from the curveΓ , see Figs. 2, 4 and 5. This implies that the grid does not adequately resolve
the geometry, and needs to be refined. The simulations in this paper, see Section 6, do not involve shapes with the features
where the curvature ζ ∼ h−1. In the future, we hope to analyze shapes with ‘‘small’’ features.

The formulae hereafter are all extensions of those obtained in [13,14] for circular and elliptical obstacles. The coordinates
(n, s) are orthogonal but not necessarily orthonormal. For a given point (n, s), its radius-vector r is expressed as follows:

r = r(n, s) = R(s)+ nν(s) =(Rx(s)+ nνx(s), Ry(s)+ nνy(s))

=


Rx + n

dRy

ds
, Ry − n

dRx

ds


.

Consequently, the basis vectors are given by

e1 =
∂r
∂n

=

dRy

ds
,−

dRx

ds


= (τy,−τx) = ν

and

e2 =
∂r
∂s

=

dRx

ds
+ n

d2Ry

ds2
,
dRy

ds
− n

d2Rx

ds2


=

dRx

ds
+ nζνy,

dRy

ds
− nζνx


=(τx − nζ τx, τy − nζ τy) = (1 − nζ )τ,

where we have used formulae (22), (23), and (24). Accordingly, the Lame coefficients for the coordinates (n, s) are

H1 ≡Hn = |e1| = 1

and

H2 ≡Hs = |e2| = |1 − nζ | = 1 − nζ , (25)

where the last equality in (25) holds because n < ζ−1 for ζ > 0 and n > ζ−1 for ζ < 0 (otherwise, the minimum radius of
curvature R̄ may be of order h or smaller).

In the coordinates (n, s), the Helmholtz equation becomes

1
Hs


∂

∂n


Hs
∂u
∂n


+
∂

∂s


1
Hs

∂u
∂s


+ k2(n, s)u = f , (26)

where Hs = Hs(n, s) is given by (25), and we have taken into account that Hn ≡ 1. Eq. (26) will be used for building the
equation-based extension of a given ξΓ from the continuous boundary Γ to the nodes of the grid boundaries γ1 and γ0. If,
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in particular, Γ is a circle of radius R, then the foregoing general constructs transform into the corresponding constructs for
polar coordinates [13,14]. In this case, the curvature ζ of (24) does not depend on s:

ζ = −
1
R
,

and consequently [see formula (25)],

Hs = 1 +
n
R

=
R + n
R

=
r
R
.

Then, according to (26), we can write:

1u =
R
r


∂

∂n


r
R
∂u
∂n


+
∂

∂s


R
r
∂u
∂s


=

1
r
∂

∂n


r
∂u
∂n


+

R2

r2
∂2u
∂s2

.

Finally, we have n = r − R so that ∂
∂n =

∂
∂r , and s = Rθ so that ∂

∂s =
1
R
∂
∂θ

, which yields:

1u =
1
r
∂

∂r


r
∂u
∂r


+

1
r2
∂2u
∂θ2

.

5.2. Equation-based extension

Given ξΓ , we define a new smooth function v = v(n, s) in the vicinity of Γ by means of the Taylor formula:

v(n, s) = v(0, s)+

L
l=1

1
l!
∂ lv(0, s)
∂nl

nl. (27)

The zeroth and first order derivatives in (27) coincide with the respective components of ξΓ :

v(0, s) = ξ0(s) and
∂v(0, s)
∂n

= ξ1(s).

All higher order derivatives in formula (27) are determined with the help of Eq. (26) applied to v. We multiply both sides of
(26) by Hs and obtain

Hs
∂2v

∂n2
+
∂Hs

∂n
∂v

∂n
+


∂

∂s
1
Hs


∂v

∂s
+

1
Hs

∂2v

∂s2
+ Hsk2v = Hs f ,

where ∂Hs
∂n = −ζ (s) and ∂

∂s
1
Hs

=
n
H2
s
ζ ′ (s), see formula (25). Then, we solve for the second derivative with respect to n, which

yields:

∂2v

∂n2
= f (n, s)− k2(n, s)v +

ζ

Hs

∂v

∂n
−

nζ ′ (s)
H3

s

∂v

∂s
−

1
H2

s

∂2v

∂s2
. (28)

Consequently,

∂2v(0, s)
∂n2

= f (0, s)− k2(0, s)ξ0(s)+ ζ (s)ξ1(s)−
∂2ξ0(s)
∂s2

.

Next, we differentiate Eq. (28) with respect to n:

∂3v

∂n3
=
∂ f
∂n

− k2
∂v

∂n
− 2k

∂k
∂n
v +


∂

∂n
1
Hs


ζ
∂v

∂n
+
ζ

Hs

∂2v

∂n2

− ζ ′


1
H3

s
+ n


∂

∂n
1
H3

s


∂v

∂s
−


∂

∂n
1
H2

s


∂2v

∂s2
−

nζ ′

H3
s

∂2v

∂n∂s
−

1
H2

s

∂3v

∂n∂s2

=
∂ f
∂n

− k2
∂v

∂n
− 2k

∂k
∂n
v +

ζ 2

H2
s

∂v

∂n
+
ζ

Hs

∂2v

∂n2

− ζ ′


1
H3

s
+ n


∂

∂n
1
H3

s


∂v

∂s
−

2ζ
H3

s

∂2v

∂s2
−

nζ ′

H3
s

∂2v

∂n∂s
−

1
H2

s

∂3v

∂n∂s2
(29)

and substitute n = 0 to get:

∂3v(0, s)
∂n3

=
∂ f
∂n

− 2k
∂k
∂n
ξ0(s)+


ζ 2

− k2

ξ1(s)+ ζ

∂2v(0, s)
∂n2

− ζ ′
∂ξ0(s)
∂s

− 2ζ
∂2ξ0(s)
∂s2

−
∂2ξ1(s)
∂s2

.
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Similarly, the fourth normal derivative is obtained by differentiating (29) with respect to n:

∂4v

∂n4
=
∂2f
∂n2

− 2


∂k
∂n

2

+ k
∂2k
∂n2


v +


2ζ 3

H3
s

− 4k
∂k
∂n


∂v

∂n
+


2
ζ 2

H2
s

− k2

∂2v

∂n2

+
ζ

Hs

∂3v

∂n3
−

3ζ ζ ′

H4
s


∂v

∂s
+ n


∂2v

∂s∂n
+

3ζ
Hs

∂v

∂s


−

6ζ 2

H4
s

∂2v

∂s2

−
ζ ′

H3
s


2
∂2v

∂s∂n
+

3ζ
Hs

∂v

∂s
+ n


∂3v

∂s∂n2
+

3ζ
Hs

∂2v

∂s∂n
+

3ζ 2

H2
s

∂v

∂s


−

4ζ
H3

s

∂3v

∂n∂s2
−

1
H2

s

∂4v

∂n2∂s2

and substituting n = 0, which yields:

∂4v(0, s)
∂n4

=
∂2f
∂n2

− 2


∂k
∂n

2

+ k
∂2k
∂n2


ξ0(s)+


2ζ 3

− 4k
∂k
∂n


ξ1(s)+


2ζ 2

− k2
 ∂2v(0, s)

∂n2

+ ζ
∂3v(0, s)
∂n3

− 6ζ ζ ′
∂ξ0(s)
∂s

− 6ζ 2 ∂
2ξ0(s)
∂s2

− 2ζ ′
∂ξ1(s)
∂s

− 4ζ
∂2ξ1(s)
∂s2

−
∂4v(0, s)
∂n2∂s2

.

The quantity ∂4v(0,s)
∂n2∂s2

is derived by differentiating (28) twice with respect to s:

∂4v

∂n2∂s2
=
∂2f
∂s2

− 2


∂k
∂s

2

+ k
∂2k
∂s2


v +


ζ ′′

H2
s

+
2n

ζ ′
2

H3
s


(Hs + nζ )

∂v

∂n

−


n
H4

s


Hsζ

′′′
+ 9nζ ′ζ ′′

+
12n2

Hs


ζ ′
3

+ 4k
∂k
∂s


∂v

∂s
−


4nζ ′′

H3
s

+
12n2


ζ ′
2

H4
s

+ k2

∂2v

∂s2

−
5nζ ′

H3
s

∂3v

∂s3
−

1
H2

s

∂4v

∂s4
+ 2


ζ ′

Hs
+

nζ ζ ′

H2
s


∂2v

∂n∂s
+
ζ

Hs

∂3v

∂n∂s2

and substituting n = 0:

∂4v(0, s)
∂n2∂s2

=
∂2f
∂s2

− 2


∂k
∂s

2

+ k
∂2k
∂s2


ξ0(s)+ ζ ′′

∂v

∂n

− 4k
∂k
∂s
∂ξ0(s)
∂s

− k2
∂2ξ0(s)
∂s2

−
∂4ξ0(s)
∂s4

+ 2ζ ′
∂ξ1(s)
∂s

+ ζ
∂2ξ1(s)
∂s2

.

Higher order derivatives (e.g., for the sixth order scheme) can be obtained in the same manner.
We emphasize that formula (27) is not an approximation of a given v(n, s) by its truncated Taylor’s expansion. It is rather

the definition of a new function v(n, s). This function is used for building the equation-based extension of ξΓ from Γ to γq:

ξγq = Ex(q)ξΓ
def
= v(n, s)


γq
. (30)

In other words, extension (30) is obtained by drawing a normal from a given node of γp to Γ , see Fig. 5, and then using the
Taylor formula with higher order derivatives computed by differentiating the governing equation (26).

6. Results

We consider the following problem [cf. formula (2)]:1u + k20u = 0, x ∈ Ω0,

1u + k1(x)2u = 0, x ∈ Ω1,

1u + k2(x)2u = 0, x ∈ Ω2,

(31)

driven by the incident wave u(inc) = eik0Rx cos θ+ik0Ry sin θ , where θ denotes the angle of incidence. The wavenumber for the
exterior domainΩ0 is constant while the wavenumber for the interiorΩ2 and intermediateΩ1 domains varies:

kq(x) = k̃qe−10(r−r0)6r6 , q ∈ {1, 2}, (32)

where r0 = 1.6 and k̃1 is a parameter that assumes different values for different simulations described below. In what
follows, except for the last example, we solve a simplified problem (31) for several irregular shapes of the interface
Γ = Γ1 = {R(s) = (Rx(s), Ry(s))} between Ω0 and Ω1, with no additional interface Γ2 inside Γ1. In the last example,
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(a) Cartesian grid. (b) Polar grid.

Fig. 6. The grid boundaries for the kite on a 33 × 33 discretization grid.

(a) k0 = 1 and k̃1 = 3.

(b) k0 = 5 and k̃1 = 10.

Fig. 7. The wave number k for the kite.
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(a) Real part. (b) Imaginary part.

(c) Absolute value.

Fig. 8. Total field for the transmission and scattering of a plane wave about a kite at the angle of incidence θ = 0°, with k0 = 5 and k̃1 = 10.

Table 1
Fourth order grid convergence for the transmission and scattering of a plane wave with the incidence angle θ = 0° about a kite.

Grid k0 = 1, k̃1 = 3,M = 61 k0 = 5, k̃1 = 10,M = 64 k0 = 10, k̃1 = 20,M = 67
∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate

Exterior
64 × 64 6.294093e+00 – 5.261709e+03 – 1.869403e+03 –
128 × 128 5.798326e−03 10.08 7.493228e−01 12.78 2.575746e+00 9.50
256 × 256 5.719824e−04 3.34 8.757690e−03 6.42 1.919236e−01 3.75
512 × 512 1.484623e−05 5.27 5.326607e−04 4.04 3.126876e−03 5.94
1024 × 1024 8.515695e−07 4.12 2.078834e−05 4.68 2.377990e−04 3.72
2049 × 2049 3.917679e−08 4.44 1.011240e−06 4.36 1.242605e−05 4.26

Interior
64 × 64 4.148434e+01 – 1.406104e+05 – 1.224631e+04 –
128 × 128 3.156142e−02 10.36 3.398898e+00 15.34 3.117782e+00 11.94
256 × 256 4.703980e−03 2.75 1.131129e−01 4.91 8.350206e−01 1.90
512 × 512 2.095950e−05 7.81 6.704542e−04 7.40 5.691779e−03 7.20
1024 × 1024 7.021794e−07 4.90 1.839269e−05 5.19 2.207484e−04 4.69
2049 × 2049 4.131632e−08 4.09 9.240163e−07 4.32 8.825747e−06 4.64

we solve a full fledged formulation with two interfaces, Γ2 and Γ1, and multiple scattering. Since the exact solution u of
problem (31) is typically not known, we cannot directly observe or quantify the grid convergence:

∥u − u(h)∥ → 0 as h → 0, (33)
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(a) Cartesian grid. (b) Polar grid.

Fig. 9. The grid boundaries for the submarine on a 33 × 33 discretization grid.

Table 2
Fourth order grid convergence for the transmission and scattering of a plane wave about a submarine at the angle of incidence θ = 0°.

Grid k0 = 1, k̃1 = 3,M = 90 k0 = 5, k̃1 = 10,M = 95 k0 = 10, k̃1 = 20,M = 100
∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate

Exterior
64 × 64 2.295752e+01 – 2.237487e+00 – 9.916726e−01 –
128 × 128 1.375159e+02 −2.58 1.619068e+03 −9.50 3.583345e+05 −18.46
256 × 256 4.990559e−01 8.11 3.935502e+00 8.68 2.036714e+00 17.42
512 × 512 1.290265e−03 8.60 8.432259e−03 8.87 3.475999e−02 5.87
1024 × 1024 1.293954e−05 6.64 6.619289e−05 6.99 1.481051e−04 7.87
2049 × 2049 4.003078e−07 5.01 2.210780e−06 4.90 5.048151e−06 4.87

Interior
64 × 64 7.864884e+00 – 9.351113e−01 – 9.979765e−01 –
128 × 128 4.266917e+03 −9.08 2.537239e+05 −18.05 3.109921e+07 −24.89
256 × 256 5.132072e−01 13.02 5.635594e+00 15.46 2.392006e+00 23.63
512 × 512 1.713991e−03 8.23 2.500136e−02 7.82 7.836997e−02 4.93
1024 × 1024 6.527788e−05 4.71 7.829261e−04 5.00 2.928307e−03 4.74
2049 × 2049 5.213601e−07 6.97 2.894848e−06 8.08 7.650070e−06 8.58

Table 3
Fourth order grid convergence for the external scattering of a plane wave about a submarine at the angle of incidence θ = 0°.

Grid k0 = 1,M = 95 k0 = 5,M = 100 k0 = 10,M = 105
∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate

64 × 64 1.051374e+08 – 1.052972e+07 – 8.293744e+05 –
128 × 128 1.259820e+01 22.99 6.467096e+01 17.31 1.716566e+02 12.24
256 × 256 6.211242e−03 10.99 1.791608e−02 11.82 4.192448e−02 12.00
512 × 512 6.969940e−04 3.16 1.789315e−03 3.32 3.971143e−03 3.40
1024 × 1024 4.196957e−05 4.05 9.784597e−05 4.19 2.377339e−04 4.06
2049 × 2049 1.841662e−06 4.51 5.761461e−06 4.09 1.159269e−05 4.36

where u(h) denotes the approximate solution obtained on the grid of size h. Instead, we assess the grid convergence by
evaluating the norm of the difference between two succeeding approximate solutions obtained on a sequence of refined
grids:

∥u(h) − u(h/2)∥ → 0 as h → 0. (34)

Clearly, proper grid convergence in the sense of (33) implies (34). So, relation (34) provides a necessary condition for
convergence. Moreover, if the actual convergence (33) is characterized by a certain rate, then the rate of convergence in
the sense of (34) is at least as fast. Thus, all the examples that we present, in this section, show a fourth order convergence
rate.
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(a) k0 = 1 and k̃1 = 3.

(b) k0 = 5 and k̃1 = 10.

Fig. 10. The wave number k for the submarine.

Table 4
Fourth order grid convergence for the transmission and scattering of a plane wave with the incidence angle θ = 0° about a star with rounded edges.

Grid k0 = 1, k̃1 = 3,M = 89 k0 = 5, k̃1 = 10,M = 97 k0 = 10, k̃1 = 20,M = 100
∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate

Exterior
64 × 64 1.897713e+01 – 1.359849e+01 – 4.464070e+02 –
128 × 128 6.274128e+00 1.60 6.472424e+00 1.07 4.617413e+02 −0.05
256 × 256 2.693255e−03 11.19 7.835759e−03 9.69 7.305258e−02 12.63
512 × 512 1.266509e−05 7.73 1.072922e−04 6.19 5.144006e−04 7.15
1024 × 1024 6.169030e−07 4.36 4.556798e−06 4.56 2.833560e−05 4.18
2049 × 2049 3.215375e−08 4.26 3.142369e−07 3.86 1.436230e−06 4.30

Interior
64 × 64 3.440719e+02 – 3.558703e+02 – 9.670006e+03 –
128 × 128 1.784930e+01 4.27 2.146546e+01 4.05 1.611719e+03 2.58
256 × 256 3.058072e−03 12.51 2.875988e−02 9.54 1.764544e−01 13.16
512 × 512 1.251820e−05 7.93 3.272978e−04 6.46 1.063229e−03 7.37
1024 × 1024 6.189435e−07 4.34 4.147246e−06 6.30 2.641565e−05 5.33
2049 × 2049 3.395252e−08 4.19 3.026219e−07 3.78 1.437789e−06 4.20

Relation (34) does not provide a sufficient condition for the true convergence in the sense of (33). Rather (34) is similar to
convergence in the sense of Cauchy.2However, condition (34) is easy to check, in a practical setting, when no exact solution
is available. Therefore, we shall use it as a convergence indicator. The norm in (34) is chosen as the maximum norm, ∥ · ∥∞.

2 Condition (34) is somewhat weaker than convergence in the sense of Cauchy, because we only consider pairs of succeeding grids (h, h/2) rather than
all the grids finer than a given h.
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(a) Real part. (b) Imaginary part.

(c) Absolute value.

Fig. 11. Scattered field for the external scattering of a plane wave about a submarine at the angle of incidence θ = 0° and with k0 = 10.

6.1. A kite

The first case is an interface in the form of a kite given by:

Γ = R(t) =

Rx(t), Ry(t)) = (cos t + 0.65 cos 2t − 0.65, 1.5 sin t


, 0 6 t 6 2π.

For the interior auxiliary problem, we take a Cartesian grid on the rectangle [−1.7, 1.2] × [−1, 7, 1.7]. For the exterior AP,
we take a polar grid on the annulus {0.8 6 r 6 2.2}. The continuous boundary Γ and the grid boundaries γ2 and γ0 are
shown in Fig. 6. Note, the auxiliary domain should allow for at least a few grid nodes between Γ and the outer boundary,
so that the grid boundary γ2 or γ0 is fully inside the grid. The variable wave number for the entire domain is shown in Fig. 7
for two different cases: k0 = 1 and k1 = k1(x) given by (32) with k̃1 = 3 in Fig. 7(a), and k0 = 5, k̃1 = 10 in Fig. 7(b). In
Fig. 8 we display the solution driven by the plane wave at an angle of incidence θ = 0°. Table 1 presents the results for the
grid convergence for three different choices of the exterior and interior wave number.

6.2. A submarine-like scatterer

Next we consider a submarine-like interface defined by:

Γ = R(t) = (Rx(t), Ry(t)) =


1.8 cos t, 0.36 sin t ·


1 + 2 ·


cos t

2 + sin t
2

√
2

150
,

where 0 6 t 6 2π . The interior AP is solved on the rectangle [−2.2, 2.2] × [−0, 6, 1.2] using a Cartesian grid. The exterior
AP is solved on a polar grid in the annulus {0.3 6 r 6 2.2}. Fig. 9 presents the geometry of the interface Γ and the grid sets.
Fig. 10 shows the variation of the wave number k across the computational domain for two cases: k0 = 1 and k1 = k1(x)
with k̃1 = 3 (see formula (32)) is in Fig. 10(a), and k0 = 5, k1 = k1(x)with k̃1 = 10 is in Fig. 10(b).



92 M. Medvinsky et al. / Wave Motion 62 (2016) 75–97

(a) Real part. (b) Imaginary part.

(c) Absolute value.

Fig. 12. Total field for the transmission and scattering of a plane wave about a submarine at the angle of incidence θ = 0°, with k0 = 5 and k̃1 = 10.

(a) Cartesian grid. (b) Polar grid.

Fig. 13. The grid boundaries for the star with rounded edges on a 33 × 33 grid.

For the case of a submarine-like body, we solve two problems: an external scattering problem with a homogeneous
Dirichlet boundary condition at the surface Γ and a transmission/scattering problem similar to that solved in Section 6.3
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(a) k0 = 1 and k̃1 = 3.

(b) k0 = 5 and k̃1 = 10.

Fig. 14. Profile of the variable wave number k for the star with rounded edges.

for the star interface and in Section 6.1 for the kite interface. The external scattering solution for k0 = 10 and θ = 0° is
presented in Fig. 11. Table 3 demonstrates the grid convergence for three different choices of the exterior wave number.
The transmission/scattering solution for the submarine is shown in Fig. 12, while Table 2 summarizes the grid convergence
results for this case.

6.3. A star with rounded edges

The third case is an interface shaped as a five-ray star with rounded edges to make it smooth. It is shown in Fig. 13 and
is given by the following parametric expression:

Γ = R(t) = (Rx(t), Ry(t)) =


1
6
cos(4t)+

7
6
sin(t),

7
6
cos(t)+

1
6
sin(4t)


, 0 6 t 6 2π.

For the interior auxiliary problem, we choose a Cartesian grid on the square [−1.7, 1.7] × [−1, 7, 1.7]. For the exterior AP,
we choose a polar grid on the annulus {0.3 6 r 6 2.2}. The grid boundaries γ2 and γ0 defined by formulae (8) and (10),
respectively, are also shown in Fig. 13 for the case where the dimension of the main discretization grid is 33 × 33. The
variable wave number for the entire domain is shown in Fig. 14: specifically, in Fig. 14(a) the wave numbers are k0 = 1 and
k1 = k1(x)with k̃1 = 3, see formula (32), and in Fig. 14(b) we have k0 = 5 and k̃1 = 10. In Fig. 15, we present the solution
for the incident plane wave at θ = 0°. Table 4 demonstrates the grid convergence for various sets of parameters.

6.4. Multiple scattering

The last case is a multiple scattering problem, with interface Γ = Γ2 ∪ Γ1 where Γ2 is a five-ray star with rounded
edges defined in the beginning of Section 6.3 and Γ1 is a circle of radius r = 2. The schematic is shown in Fig. 16. For the
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(a) Real part. (b) Imaginary part.

(c) Absolute value.

Fig. 15. Total field for the transmission and scattering of a plane wave about a star with rounded edges at the angle of incidence θ = 0°, with k0 = 5 and
k̃1 = 10.

Fig. 16. The grid boundaries for the star with rounded edges inside a circle on a 33 × 33 grid.

exterior auxiliary problem, we choose a polar grid on the annulus {1.8 6 r 6 2.5}. For the interior auxiliary problem we
choose exactly the same interior auxiliary problem as in Section 6.3, it is depicted in Fig. 13(a) and we choose a Cartesian
grid on the square [−1.7, 1.7] × [−1.7, 1.7]. For the intermediate auxiliary problem we choose a Cartesian grid on the
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(a) k0 = 1, k̃1 = 5 and k̃2 = 10.

(b) k0 = 10, k̃1 = 15 and k̃2 = 20.

Fig. 17. Profile of the variable wave number k for the star with rounded edges.

square [−2.2, 2.2] × [−2.2, 2.2]. The grid boundaries γ1 and γ2 defined by formulae (8) and shown in Figs. 16 and 13(a)
respectively, for the case where the dimension of the main discretization grid is 33× 33. The grid boundary γ0 is defined by
(10). The variable wave number for the entire domain is shown in Fig. 17; see also Fig. 1 for the definition of k0, k1, and k2.
Specifically, in Fig. 17(a) the wave numbers are k0 = 1, k1 = k1(x), and k2 = k2(x) with k̃1 = 5 and k̃2 = 10 respectively,
see formula (32), and in Fig. 17(b) we have k0 = 20, k̃1 = 50, and k̃2 = 10. In Fig. 18, we present the solution for the incident
plane wave at θ = 40°. Table 5 demonstrates the grid convergence for various sets of parameters.

7. Discussion

We have described a combined implementation of the method of difference potentials together with a compact high
order accurate finite difference scheme for the numerical solution of wave propagation problems in the frequency domain
for the case of general geometries. The Helmholtz equation is approximated on a regular structured grid, which is efficient
and entails a low computational complexity. At the same time, the method of difference potentials guarantees no loss
of accuracy for curvilinear non-conforming boundaries. We can also handle variable coefficients that describe a non-
homogeneous medium. Thus, this methodology provides a viable alternative to both boundary element methods and
high order finite element methods. Among the advantages of the proposed methodology are its capability to accurately
reconstruct the solution and/or its normal derivative directly at the interface (without having to interpolate and/or use
one-sided differences, such as done in conventional finite differences and finite elements).

The performance of our method and its design high order accuracy have been corroborated numerically by solving a
variety of 2D transmission/scattering problems, including problems that involve multiple scattering, for smooth general
shaped domains with a varying wavenumber using only Cartesian and polar grids.

The case of general shaped domains with the boundaries that are not necessarily smooth has not been investigated in the
paper. There are two main differences between this case and the case of smooth boundaries that we have analyzed. On one
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(a) Real part. (b) Imaginary part.

(c) Absolute value.

Fig. 18. Total field for the transmission and scattering of a plane wave about a star with rounded edges inside circle at angle of incidence θ = 40°, with
k0 = 5, k̃1 = 10 and k̃2 = 15.

Table 5
Fourth order grid convergence for themultiple scattering of a planewavewith the incidence angle θ = 40° through a star with rounded edges inside circle.

Grid k0 = 1, k̃1 = 5, k̃2 = 10, M = 90 k0 = 5, k̃1 = 10, k̃2 = 15,M = 96 k0 = 10, k̃1 = 15, k̃2 = 20,M = 101
∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate ∥uh

− u2h
∥∞ Rate

Exterior
64 × 64 8.576803e+00 – 8.452339e+00 – 4.131025e+00 –
128 × 128 9.166389e+00 −0.10 4.221633e+00 1.00 1.989940e+00 1.05
256 × 256 2.558925e−03 11.81 1.578030e−03 11.39 2.085242e−02 6.58
512 × 512 9.164032e−05 4.80 6.357957e−05 4.63 8.377927e−04 4.64
1024 × 1024 6.080010e−06 3.91 3.995037e−06 3.99 5.260751e−05 3.99
2049 × 2049 3.442998e−07 4.14 2.587757e−07 3.95 3.278522e−06 4.00

Intermediate
64 × 64 3.625781e+01 – 7.146890e+03 – 3.489656e+03 –
128 × 128 5.437903e+01 −0.58 1.871236e+03 1.93 1.341972e+03 1.38
256 × 256 3.890433e−03 13.77 8.918431e−03 17.68 9.264290e−02 13.82
512 × 512 1.327692e−04 4.87 6.825677e−05 7.03 9.212461e−04 6.65
1024 × 1024 8.830146e−06 3.91 4.288235e−06 3.99 5.759067e−05 4.00
2049 × 2049 4.962013e−07 4.15 2.776753e−07 3.95 3.595732e−06 4.00

Interior
64 × 64 6.798173e+02 – 8.037889e+04 – 1.666677e+05 –
128 × 128 6.253578e+02 0.12 1.434150e+04 2.49 8.019034e+04 1.06
256 × 256 4.137007e−03 17.21 5.293907e−03 21.37 7.849041e−02 19.96
512 × 512 1.411678e−04 4.87 8.649081e−05 5.94 3.729582e−04 7.72
1024 × 1024 9.542619e−06 3.89 2.919410e−06 4.89 2.282353e−05 4.03
2049 × 2049 5.394062e−07 4.14 1.913741e−07 3.93 1.489259e−06 3.94
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hand, if the boundary is only piece-wise smooth rather than smooth (e.g., it has corners), then the systems of basis functions
(Section 4.2), as well as the curvilinear coordinates and equation-based extensions (Section 5), need to be constructed
independently for each smooth interval of the boundary. Other components of the method of difference potentials, such
as the auxiliary problem and the definitions of the grid sets (Section 4.1), remain unaffected. Altogether, the corresponding
modifications are substantial but well understood. They have been introduced and successfully tested previously in the
work [15], where we studied problems with non-standard boundary conditions (e.g., Dirichlet on one part of the boundary
and Neumann on the other part of the boundary), and in the work [16], where we allowed for discontinuous boundary data.
On the other hand, in the case of a boundary with corners (in particular, re-entrant corners), the solution itself frequently
becomes singular. For singular solutions, the finite difference schemes of Section 3 (as well as many other schemes) will no
longer be consistent, and the overall solution accuracy will deteriorate or may even be completely lost. To avoid this, the
solution needs to be regularized prior to having it approximated numerically. This is what we did in the work [16], where
the singularities in the solution were due to discontinuities in the boundary data. The regularization was done by truncating
several leading terms of the asymptotic expansion near the singularity. We then obtained the design fourth order accuracy
of the numerical method. When the singularities are due to the geometric features of the boundary, the regularization of
the solution proves more subtle because a certain part of the regularizing expansion cannot be determined ahead of time.
This issue requires a thorough investigation that is beyond the scope of the current work. Once complete, the results will be
presented in a separate publication.
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