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1. Introduction

We propose a high order accurate numerical method for the solution of two-dimensional boundary value problems of
wave analysis. It applies to a wide variety of physical formulations that involve the transmission and scattering of acoustic
and electromagnetic waves. In the current paper, we solve the scalar wave propagation problem in the frequency domain
and concentrate on applications to general shaped boundaries and interfaces.
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It is well known that high order accuracy is of central importance for the numerical simulation of waves because of the
pollution effect [ 1-3]. For both finite difference and finite element approximations, the numerical phase velocity of the wave
depends on the wavenumber k, so a propagating packet of waves with different frequencies gets distorted in the simulation.
Furthermore, the numerical error is proportional to h’kP*!, where h is the grid size and p is the order of accuracy of the
chosen approximation. So the number of points per wavelength needed for a given accuracy increases as k'/?. Hence, higher
order accurate approximations are very beneficial, as they reduce the effect of the pollution.

Our methodology for solving the Helmholtz equation combines compact equation-based high order accurate finite
difference schemes [4,5] with the method of difference potentials by Ryaben’kii [6,7]. We have chosen this approach because
we can take advantage of the simplicity and efficiency of high order finite difference schemes on regular structured grids
(such as Cartesian or polar) and at the same time are able to handle non-conforming curvilinear boundaries and interfaces
with no deterioration of accuracy due to staircasing.

The technique we propose presents a viable alternative to finite elements. Unlike finite differences, finite elements are
designed for handling sophisticated geometries. However, high order accurate finite element approximations can be built for
arbitrary boundaries only in fairly sophisticated and costly algorithms with isoparametric elements. These methods require
grid generation which can be nontrivial for complex geometries and interfaces. In discontinuous Galerkin, discontinuous
enrichment, and generalized finite element methods, high order accuracy also requires additional degrees of freedom.
Yet, we are interested in predominantly smooth problems: geometrically large regions with smooth material parameters
separated by several interface boundaries, e.g., scatterers in large volumes of free space. The solution of such problems is
smooth between the interfaces (as long as the latter are sufficiently smooth in their own right) and so high order finite
elements carry a substantial redundancy. The latter entails additional computational costs that we would like to avoid.

Therefore, we use compact finite difference schemes [8,9,4,5,10-12] to achieve high order accuracy. As any finite
difference scheme, a compact scheme requires only one unknown per grid node, so there are no extra degrees of freedom.
At the same time, unlike the standard high order accurate schemes compact schemes do not need extended stencils. In
particular, equation-based compact schemes [4,5] use the equation itself to eliminate the distant stencil points. These high
order schemes reduce pollution while keeping the treatment of the boundary conditions simple, since the order of the
resulting difference equation is equal to the order of the differential equation. Hence, no additional numerical boundary
conditions are required.

The previous stages of development of our computational approach are reported in a series of papers [13-18]. The
method of difference potentials [6,7] furnishes the required geometric flexibility. Specifically, it applies to a discretization
on a regular structured grid and allows for non-conforming curvilinear boundaries with no loss of accuracy. Our technique
provides an attractive substitute for the method of boundary elements, because it is not limited to constant coefficients and
does not involve singular integrals.

The method of difference potentials is a discrete analog of the method of Calderon’s operators [19,20,7]. It has the
following key advantages:

e Maximum generality of boundary conditions. Any type of boundary conditions can be handled with equal ease, including
mixed, nonlocal and interfaces.

e The problem is discretized on a regular structured grid, yet boundaries and interfaces can have an arbitrary shape and
need not conform to the grid. This causes no loss of accuracy due to staircasing.

e Variable coefficients, or equivalently, heterogeneous media, are easily handled. The constructs of Calderon’s operators
remain essentially unchanged.

e The methodology does not require numerical approximation of singular integrals. The inverse operators used for
computing the discrete counterparts to Calderon’s potentials and projections, involve no convolutions or singularities
and allow fast numerical computation. The well-posedness of the discrete problem is guaranteed.

Our previous papers on the subject [ 13-18] discussed model obstacles that were either circles or ellipses. The objective
of this study is to include scatterers with more general smooth shapes and to allow for multiple scattering. The numerical
results that we present demonstrate that this objective has been successfully achieved. Our algorithm attains the design
fourth order accuracy when solving the transmission/scattering problems for a variety of non-conforming shapes, including
the case of heterogeneous media.

1.1. Outline of the paper

In Section 3, we provide a brief account of the compact high order accurate equation-based schemes [4,5,8,9] for solving
the variable coefficient Helmholtz equation. In Section 4, we introduce Calderon operators and their discrete counterparts.
We briefly discuss their key properties. In Section 5 we discuss the coordinates associated with the interface curve and
the equation-based extension. In Section 6, we present the results of computations confirming the high order accuracy for
non-conforming boundaries. Finally, Section 7 contains conclusions.

2. Formulation of the problem

The most general problem formulation that we study in the paper involves embedded regions and allows for multiple
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Fig. 1. Schematic for the transmission/reflection problem that involves multiple scattering.

scattering, see Fig. 1. Let Iy and I, be two non-intersecting smooth closed curves inside one another. They partition the
plane R? into three regions: the exterior region £2o, which is outside I'j, the intermediate region £2;, which is in-between
I't and I3, and the interior region £2,, which is inside I;. Then, 029 = I';, 021 = 1 U I3, and 082, = I>.

We consider the time-harmonic waves propagating in an unbounded heterogeneous medium defined by the domains
£20, £21, and §2,. The propagation is governed by the scalar Helmholtz equation. In the exterior domain £2, the wavenumber
k in the Helmholtz equation (which is determined by the local propagation speed, k = w/c) is assumed constant, whereas
in the intermediate domain £21, as well as in the interior domain §2,, the wavenumber is allowed to vary smoothly:

ko, X € $2,
k:k(x): k](x)7 XE.Ql, (1)
ky(X), x€ 2, =R\ (£2,U2).

At the boundaries 'y and I, the wavenumber may undergo jump discontinuities, so that altogether the function k = k(x)
of (1) is piecewise smooth.

The Helmholtz equation for the medium with k(x) given by (1) is written in the form of three individual sub-equations
that correspond to the regions where the wavenumber varies smoothly:

def

Lu = Au(x) + kK (®x)u =f(x), X € 2, (2a)
Liu ™ Au) + K (®)u =fi(x), x€ 2, (2b)
Lou & Au@) + 12y =fo(x), x € 2. (20)

To ensure uniqueness, additional conditions must be specified at the interfaces I'; and I, where the coefficient k undergoes
jumps, as well as at infinity. We require that the function u and its first normal derivative be continuous across I; and I3,
and at infinity we impose the Sommerfeld radiation condition. The solution u of Eqs. (2) is assumed driven by the given
incident plane wave u("® = e~** where |k| = ko, as well as by the source terms f,(x), q € {0, 1, 2}.

For the numerical experiments of Section 6 that do not involve multiple scattering, the forgoing problem formulation is
simplified. The interface I'; and the separate interior domain £2, are eliminated, so that £2p = R?\ £2; and I'; = 92, = 9£2,.
The domain £2; becomes simply connected, and the wavenumber k = k;(x) varies smoothly across the entire §2; Then, we
are solving a typical transmission/reflection problem.

3. Compact high order accurate equation-based schemes

3.1. Scheme for the interior and intermediate problems

For the interior problem formulated on £2, and the intermediate problem formulated on §24, we consider the Helmholtz
equation with a variable wavenumber (see Egs. (2a), (2b)):

2 9%u

o°u
Lu= — 4+ —+Kxypu=[fxy), qecf{l1,2}, 3
q 8x2+8y2+(y) fxy), qe{1,2} 3)
where k(x, y) = kq(x, ), see (1), and f(x, y) = fy(x, y).
We introduce a uniform in each direction Cartesian grid with the sizes h, and h, and use the following equation-based
compact scheme:

Uiprj — 2Uij + Uiy | Ui — 2055 + Ui
2 2
n2 h2

+ (kz u)i,j
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n hj ﬁ T (i — 20+ Uig1j-1 o Uijt1 = U5 + Ujjq n Ui—1j+1 — 2Ui—1j + U151
12 12) n? h2 h2 h?

LI Wy = 20w+ Wiy Wi = 208015+ ()i
12 h2 12 h2

_ WS =24y N S =26+ i
12 h2 12 h2

+fij- (4)

Details of the derivation and accuracy analysis can be found in [8,9,21,5]. The scheme yields fourth order accuracy for
smooth solutions. Even higher accuracy can be achieved using the same compact stencils. In [21], we have constructed a sixth
order accurate equation-based scheme for the Helmholtz equation with a variable wavenumber k. Unlike regular schemes,
the compact scheme (4) employs two stencils. The nine-node 3 x 3 stencil {(i,j), i+ 1,j), (i,j£ 1), i£+ 1,j £ 1)} is used
for the discrete solution u; j, and the five-node stencil {(i, j), (i £ 1, ), (i,j £ 1)} is used for the source function f; ;. Since
the left-hand side stencil is 3 x 3, the compact scheme (4) does not require additional boundary conditions beyond those
needed for the original differential equation. Dirichlet boundary conditions are straightforward to set; Neumann boundary
conditions can also be included without expanding the stencil [9,21].

3.2. Scheme for the exterior problem

For the exterior problem formulated on £2y, we consider the Helmholtz equation with a constant wavenumber k = ky
(see Eq. (20)):

L 19 ( ou N 1 0%u U= 6) 5)
Uu=-—|r— —— 4+ k*u=f(r,0).
0 ror \ or r2 962

The equation-based compact scheme is built on a uniform polar grid with the sizes h, and hy:

11 Unt1,0 — umﬁl um,l - um—l,l
—— \Tm+12————— —Tm—12———(

I'm hr hr hr
n l Um 141 — 2Um, 1 + Um -1 _ hi ﬁ o aUmsni— 2 + U1
i h 12| arz|,, n2
1 1 (u U1, + U )
'12h5 r'%]+] m+1,1+1 m+1,1 m+1,1-1
2 1
-= (um11+1 — 22U + Um,l—l) + 5 (umq,lﬂ — U1+ umfl,lfl) (©6)
Tm Tm71
hf of o Umy1] — Un—1 1 1
" o | or|, K q e S \u —2u +u _
12ry, |:8r ml 2h, 2hrh§ r;ﬂ ( m+1,1+1 m+1,1 m+1,1 1)
1
-2 (”m—l,l+1 —2Up—11+ um—1,1_1)
rm—l
h? 1 h
- = —Kup — — (u U U q) ) + —— (u e
122 (fm,l T o (tm, 141 m,t =+ U, 1)) 121 (tme1, = Um—11)
— @ ﬁ .y Um,i+1 — 2Um,1 + Um 11
12 892 m,l hg
+ m [rms1/2 Um0 = U 1) = Fmot 2 WUm i = U 41)

— 2 (rmr1/2 W) — Um1) = Fme1/2 Ut — Un—1,))
2
+ Tng1/2 U 1,21 — Umi—1) — Tm—1/2 Um,—1 — Um—1,1-1) | + KU1 = fin1.

Scheme (6) yields fourth order accuracy for smooth solutions; it is analyzed and tested in [4]. Similarly to scheme (4),
the compact scheme (6) also employs two stencils. The stencil for the discrete solution u,,; is nine-node: {(m, ), (m &
1,0),(m,1 £ 1), (m £ 1,1 £ 1)}, and the stencil for the right-hand side fp is five-node: {(m, ), (m £ 1,1), (m, | £ 1)}.
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Scheme (6) requires no additional boundary conditions beyond those needed for the original differential equation, since the
left-hand side stencil is 3 x 3. Neumann boundary conditions for scheme (6) can be set using the same 3 x 3 stencil, see [13].

4. Difference potentials and projections

4.1. Auxiliary problem

The original domains £2,, £21 and £2y, see (2), may have a general irregular shape. This could make setting the boundary
conditions for schemes (4) and (6), respectively, difficult, given that both schemes are constructed on regular structured
grids. The method of difference potentials, however, allows us to completely circumvent those difficulties.

We enclose each domain §2;,j € {0, 1, 2}, within an auxiliary domain £;: £2; C £2;. On the domain £2;, we formulate a
special auxiliary problem (AP) for the corresponding inhomogeneous Helmholtz equation. The key requirement of the AP
is that it should have a unique solution for any right-hand side defined on £2;. It can otherwise be formulated arbitrarily
except that the exterior AP needs to include an exact or approximate counterpart of the Sommerfeld radiation condition.
Hence, we choose the AP so that it is easy to solve numerically. In particular, we select the auxiliary domains of simple
shape, rectangular for £2, and £2, and annular for £2q. In the method of difference potentials, the AP is used for computing
the discrete counterparts of Calderon’s operators [19,20]. While the operators themselves depend on the choice of the AP,
the actual solution u of the problem of interest, e.g., the interface problem (2), is not affected [7].

4.1.1. Interior and intermediate AP
_ The interior and intermediate auxiliary problems are formulated using Cartesian coordinates on the rectangular domain
$2¢ = [x3, X{1 x [y, ¥l g € {1,2}:

qul:gq, X € [qu,
%z : y € yih
u
— =ipu, x=xg, 7)
ox
Ju . q
—— =iuu, x=x%
ox !

In doing so, we are assuming that the variable coefficient k, is defined not only on £2,, but on the larger domain fzq as well.
The AP (7) is approximated by means of the compact scheme (4) and then solved by LU decomposition. In Section 4.2, we
will see that the algorithm requires repeated solution of the AP for one and the same operator and different right-hand
sides. This allows us to perform the LU decomposition only once and thus achieve substantial gains in performance. In the
particular case where k; = const, the AP (7) can be solved using the separation of variables and FFT. Note that the complex
Robin boundary conditions imposed at the left and right boundaries of the auxiliary domain .(~2q, q € {1, 2}, are not intended
to represent any physical behavior. They merely make the spectrum of the AP complex and hence ensure the uniqueness
of the solution. These boundary conditions can be approximated with fourth order accuracy without having to extend the
compact stencil of the scheme (4), see [5, Section 4.2]. N
Let Ny, g € {1, 2} be a uniform Cartesian grid on the rectangle £2,:

Ng = {@&.yD) | x, =mh?, yI =nh?, m=0,...,Mg, n=0,...,Ng}.
Creating a discrete analog of the boundary 9£2, is central to our method since 9£2; is not aligned with the Cartesian grid.!

The following subsets of the Cartesian grid N, are used for this purpose. Let M; C N, be the set of only interior nodes of the
rectangular domain £24. Thus M, contains all the nodes of N, except for those along the boundary edges of the rectangle:

Mg = {8,y [ x4, =mh?, yi =nh?, m=1,....Mg—1,n=1,...,N;— 1}.

m

Notice, that if we form a set which contains all of the nodes “touched” by the 9-point compact stencil operating on the set
Mg, then this set will coincide with Ng. It is for this reason that the right-hand side gl , of the discrete AP is defined only on
the interior nodes, i.e., on M. We now distinguish those nodes which are within the domain §2, from those which are not
in £24. For ¢ = 1, being in £2; means in-between the curves I and I'; for ¢ = 2, being in £2, means inside the curve 7. Let
all those nodes which belong to £2, be denoted by M;r C My, and those which do not belong to £2,, except for the edges of

the auxiliary domain, by M, C M. Next, let the collections of all nodes touched by the 9-point compact stencil operating
on the nodes of M; and M be referred to as N;; and N, respectively. Then, there is a nonempty intersection between the
sets N;r and Ng. This is referred to as the grid boundary:

ve=NJ NNy, qe{1,2}. (8)

1 Recall, 92, = I and 02, = I U I, see Fig. 1.
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Fig. 2. Interior and exterior grid subsets and the grid boundary for the interior sub-problem.

(@) e —M;, O —Nj. (b)e —M;, O —Ny. ©O=n.
Fig. 3. Interior and exterior grid subsets and the grid boundary for the intermediate sub-problem.
Examples for all the foregoing grid sets are shown in Figs. 2 and 3. Let us emphasize that the grid sets for different values

of g (q = 1and q = 2) are constructed completely independently; already at the very first step the grids N; and N, can be
different. As such, the interior part of y4, see Fig. 3(c), may but does not have to coincide with y, shown in Fig. 2(c).

4.1.2. Exterior AP
The domain of the exterior problem is £2y = R? \ (£2; U £2). The corresponding auxiliary domain £2 is chosen to be the
annulus {ry < r = |X| < rq} that contains the interface curve I';. Then, we formulate the exterior AP as follows:

Lou =gy, ro<r =[x <17y,
u=.20, r = ry, (9)
Tu = 0, r=r.

The operator boundary condition Tu = 0 in (9) is equivalent to the Sommerfeld radiation condition, but set at the finite
boundary r = r; rather than at infinity. The operator T can be explicitly constructed in the transformed space after the
variables in problem (9) have been separated by means of the azimuthal Fourier transform. In doing so, the entire AP (9) is
also solved by separation of variables, which leads to a very efficient numerical procedure, see [4, Section 4].
We denote by Ny the uniform polar grid on the annulus £2y:

No = {(rm.0n) | Tm =mh, 6, =nh, m=0,.... Mo, n=0,....No}.
A discrete analog of the boundary curve Iy = 0£2, for the polar grid is defined similarly to that for the Cartesian grid.
Namely, let My C Ny be the set of only interior nodes of the polar domain £2:

My = {(rmven) | rm=mh, 6, =nh, m=1,...,My— 1, n= 1,...,N0—1}.

Let all of those nodes which are confined within the continuous boundary I'; be denoted by MO+ C My, and those which
are outside, except for the edges of the auxiliary domain, by M, C M. Next, let the collections of all nodes touched by the
9-point compact stencil operating on the nodes of Mg and M, be referred to as NBL and N, respectively. The intersection
of the sets N(J{ and N is nonempty. The grid boundary is given by

Yo=N§ NN;. (10)
The polar grid sets are shown in Fig. 4.
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(@)e—M7, O —N{. (b)e —M,;, O —Nj. ©) O — yo.
Fig. 4. Interior and exterior grid subsets and the grid boundary for the exterior sub-problem.

4.1.3. The grid boundary y for general shapes

The key factor in obtaining y, by means of formulae (8) or (10) is the decision whether a given grid node is interior or
exterior to the body enclosed by a given closed curve I", which can be either I'; or I';. This helps us define the sets M;, My,
q € {0, 1, 2}, which, in turn, are used to obtain the sets Nq+ and N;, and hence, the set y.

Regardless of the choice of grid such a decision is simple for a circle with a given radius Ry centered at the origin,
eg., M; = {(x,¥)|vV*% +y? < Ro}. It is similarly simple for ellipses of a given eccentricity e, centered at the origin,

e.g., Mq+ = {(x, y)|Re acosh(x + iy) < acosh egl}.

We now describe the procedure for a general shaped boundary I". Let R = (Ri(t), Ry(t)) be the parameterization of a
star-shaped interface/boundary I". Let p = (x, y) be a grid point. In order to decide whether p is exterior or interior with
respect to I, one compares the magnitude of the vector from the origin to the point p and the value of R in the same
direction/angle 6. The curve R is a known function of the parameter t where in general t ## 6. To match between t and 6
one uses a root finding algorithm, e.g., Newton-Raphson, to solve

(11)

for t. Once the matching is found the point p = (x, y) is interior if it satisfies

VY < [RO) +R(®)),

otherwise p is exterior.

4.2. Difference potentials

We now provide a brief description of the difference potentials and projections, while referring the reader to [7,13,14,22]
for a comprehensive account of the methodology. In particular, the well-posedness is discussed in [13, Section 3.1.4] and
in [7, PartI]. The accuracy was investigated by Reznik [23], and some results are outlined in [ 13, Section 4.4]. The complexity
is analyzed in [13, Section 4.6]. Solutions of some exterior and interface problems are presented in [14]. Algorithms and
examples can be found in [22].

Let §,,,q € {1, 2}, be a function specified at the grid boundary y, of (8). Let w? be a grid function on Nj that satisfies
the discretized boundary conditions of the interior AP (7) at E)SNZq, and also wi|,, = §, < Trl(,g)wq = §,,. The difference
potential with density &,, is defined as

Pty = w! =G (L], ). neny, (12)

where L[(,’” is the discrete counterpart of the continuous operator L, of (7) or (3) and Géh) is its inverse obtained by solving
the interior difference AP of Section 4.1.1 on the grid Ny. Accordingly, the difference boundary projection is given by
P&, = Tr}(,Z)PN;r &y,- The key property of the projection P,, is that a given &, satisfies the difference boundary equation
with projection (BEP):

h h) £(h
P, + TrPGEIM — ¢, (13)

iff there exists u on N that satisfies Eq. (4) on M(‘; and such that TrWu = &y, Note, thatfq(h) in formula (13) is the discrete
source term of the Hefmholtz equation after the application of the second, i.e., five-node, stencil of the compact scheme, see
the right-hand side of Eq. (4).
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The constructs of discrete operators for the exterior domain exploit the grid sets and the auxiliary problem introduced
in Section 4.1.2. The potential on Ny is given by

(h) ()
Py =w =6 (L"wl, ). (14)
and the projection on y, is defined as P, &, = Trﬁg)PNE &, so that the discrete exterior BEP becomes

Py &y, + Tfﬁﬁ')céh) o(h) +d - Pyo)Tfﬁg)uﬁm) =&y,. (15)

The method of difference potentials requires no approximation of the boundary or interface conditions on the grid, and
avoids unwanted staircasing effects [24,25]. Let & = (&, &1, &, &3)|r be the unknown vector function defined at the
continuous boundary I". Unlike in Section 4.1.3 where I" could be either I'; or I3, in this section I' = Iy U I3, i.e. the
union of both interfaces. We think of & as of the trace of the solution u and its first normal derivative. Suppose & has an
expansion with respect to some basis {y,} (Fourier or Chebyshev) chosen on I":

M M
EF = (§0s$1’$27$3) |F = Z C;SO)(wnaOv 07 0)+ Z C;Sl)(os Wna(), 0)

n=—M n=—M
(é0.,0) 0.61)
M M
+ ) 20,0, 9. 0)+ > ci2(0.0,0, Yn), (16)
n=—M n=—M
(62,0) (0.83)

where c,(,o), c,(l” , c,ﬁz) and c,§3) are the coefficients to be determined. The summation in (16) can be taken finite because

for sufficiently smooth &, the corresponding Fourier or Chebyshev series converges rapidly. Hence, even for relatively
small M the spectral representation (16) provides the accuracy beyond the one that can be obtained on the grid inside
the computational domain.

Using Taylor’s formula with equation-based derivatives [23,13,16], we extend & from I to the nodes of y4, q € {1, 2},
located nearby:

é:}/z :EX(Z)EF = EXI(_lZ) (Ez, %'3) |F —+ EX;Z)fz, (17)

&, =ExVE. = Ex,)’ (50, 61,6, &) | + Ex|"fi. (18)
Similarly for the exterior part, we introduce another equation-based Taylor extension:

& = EXOkr = Exy (50, &0 | + Ex"fo. (19)

In formulae (17),(18),and (19), the operators Ex,(_;’) and Ex,(q), q € {0, 1, 2}, denote the homogeneous and inhomogeneous
part of the overall extension, respectively. Taking & - in the form (16), we rewrite (17)-(19) as follows:

M M
&, =ExVkr = ) cVEx](0,0,vn,0) + ) cVEx(0,0,0, i) + ExP,
n=—M n=M

M M
&, =ExVEL = Y cVEx] (.0,0,0)+ Y c{VEx{(0, ¥, 0,0)
n=—M n=M

M M
+ Z CéZ)EXI(})(Ov 0, ¥, 0) + Z C,(,B)EXS)(O, 0,0, V) + Ex,(l)fl,
n=M n=M
and

M M
£y = BV = (VX (¢12,0,0,0) + Y c{VEx{ (0, ¥, 0, 0) + Ex{"fy.
n=M n=M

Then, we substitute extensions (17), (18) into the BEP (13) and extension (19) into the BEP (15), which yields a system of
linear equations to be solved with respect to the coefficients of (16):

Trmg® et P 1) Ex®
(2’? (:’? 2,1 3,1 (’2: zih;fztlz ( ’ ) lilifz
n
QY b @&V @GV |c= r"G"f, (P,,1 I) Ex; " fi . (20)

20 GO n ¢ (h i
0 0 Q Q ~TrGy"f}" — (P, — 1) (Ex{”fo — TrPul™)
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In formula (20),
T T
c=[c?,cM, @ ] = [cf)lf,, B Ao Lol Mot e A c,(\;’)] (21)

and the columns of sub-matrices Q ®9, p € {0, 1, 2, 3}, q € {0, 1, 2}, are given by
QP = (0, — 1) B ¥

n»

where ¥ = (¥, 0, 0,0), ¥} = (0, ¥, 0, 0), 2 = (0, 0, ¥, 0) and ¥ = (0, 0, 0, ¥,),and n = —M, ..., M. The number
of rows in each matrix Q > is equal to the number of nodes |4l in the grid boundary yg, g € {0, 1, 2}. Hence, the overall
vertical dimension of the matrix on the left-hand side of (20) is equal to |yg| + |y1] + |12l

We emphasize that since the same & appears in all Eqs. (17), (18), and (19), then the interface condition that requires
the continuity of the solution u and its normal derivative across I (see the beginning of Section 3) is automatically enforced.

System (20) is typically overdetermined. It is solved with respect to ¢ of (21) in the sense of least squares using QR
decomposition. We note that even though the number of equations in system (20) exceeds the number of unknowns, its
least squares solution is “almost classical” in the sense that the residual of (20) at the minimum is small and converges to
zero as the grid size decreases. Finally, once & . has been obtained in the form (16), we apply the extension operators (17),
(18),and (19) once again and then compute the discrete interior and exterior solutions as the difference potentials (12) and
(14), respectively.

The algorithm described in this section is simplified in the case of plain transmission/reflection problems that involve no
multiple scattering. In this case, we have only two complementary domains, £2; and £, = R? \ £, and one interface I
separating them. The corresponding simplification is straightforward.

5. Coordinates associated with a curve and equation-based extension

The extension operators (17), (18), and (19) are of key significance for the application of the method of difference
potentials. In this section, we construct these equation-based extensions on an arbitrarily shaped, yet smooth, simple closed
interface curve I". This curve can be thought of as either I} or I} (similarly to Section 4.1.3). It is most natural to describe
the extension in terms of the arc length parameterization of I". On the other hand, for a generally shaped curve it is often
impossible to analytically obtain its arc length parameterization. Therefore, in many cases, it might be convenient to employ
a different parameterization than arc length. Then, one would use the chain rule to obtain the required normal derivatives.

5.1. Curvilinear coordinates

Assume that I” is parameterized by its arc length s:
I' = {R(s) = (R«(5), Ry(5))10 < s < S},

where R is the radius-vector that traces the curve. Assume, for definiteness, that as s increases the point R(s) moves
counterclockwise along I". The unit tangent (7) and the unit normal (v) vectors to I” are defined as

dR
T=1(5) = I and v = (v, 1) = (1), —T). (22)

Given a counterclockwise parameterization R = R(s), the normal v always points outward with respect to the domain £2;.
Hence, the pair of vectors (v, T) always has a fixed right-handed orientation in the plane.
The relation between the tangent t, the normal v, and the curvature ¢ of the curve I" is given by the Frenet formula:

&, (23)

— =

ds
The vector ‘;—: is directed toward the center of curvature, i.e., it may point either toward £2; or away from £2 (i.e, toward
£2) depending on which direction the curve I" bends. Since v has a fixed orientation, the curvature { = ¢(s) in formula
(23) should be taken with the sign (see, e.g., [26, Part 1]):

dt dt
ik 1fa-v>0,
{(s) = dr dr (24)
—|—1, if—-v<0O.
ds ds

To define the coordinates associated with the curve I" we take into account that the shortest path from a given node that
belongs to the grid boundary y; or y; to the curve I" is along the normal. Denote the value of the parameter of the curve at
the foot of this normal as s, and the distance between the original point and the foot of the normal as n, see Fig. 5. As the
position of the point may be on either side of the curve, the value of the distance n is taken with the sign: n > 0 corresponds
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Fig. 5. New coordinates (n, s) and equation-based extension.

to the positive direction v, i.e., to the exterior of £2; (toward £2¢), and n < 0 corresponds to the negative direction of v, i.e., to
the interior of §2. The pair of numbers (n, s) provides the orthogonal coordinates that identify the location of a given point
on the plane.

For a general shape of the boundary I" the coordinates (n, s) may be prone to some ambiguity, as multiple shortest
normals may exist for some of the nodes. Therefore, the multi-valued distance function at such nodes is non-differentiable
with respect to the arc length s. The multiple shortest distances for a given node may occur when the minimum radius of
curvature R = min; R(s) is of order h since the coordinates (n, s) are used only for the points of the grid boundary y which
are all about one grid size h away from the curve I'", see Figs. 2,4 and 5. This implies that the grid does not adequately resolve
the geometry, and needs to be refined. The simulations in this paper, see Section 6, do not involve shapes with the features
where the curvature ¢ ~ h~!. In the future, we hope to analyze shapes with “small” features.

The formulae hereafter are all extensions of those obtained in [13,14] for circular and elliptical obstacles. The coordinates
(n, s) are orthogonal but not necessarily orthonormal. For a given point (n, s), its radius-vector r is expressed as follows:

r =r(n,s) = R(s) + nv(s) =(R(s) + nux(s), Ry(s) + nvy(s))

(R N dR, R dRX)
= n—-, —n—-1,1.
* ds ' ds
Consequently, the basis vectors are given by
e ar (dRy de) ( )
== N7 7)==y, — ) =V
' on ds’ ds oo
and
or (dR,  d’R, dR,  d’R,
o= (B B O
0s ds ds® * ds ds?
(dRX n dR, n )
=(— vy, — — n&v
ds £ ds £V

=(tx —nl1, 1y —nfry) = (1 —n)r,
where we have used formulae (22), (23), and (24). Accordingly, the Lame coefficients for the coordinates (n, s) are
Hy =H, = |e;| =1
and
H, =H; = |e;] = |1 —n¢| = 1—ng, (25)
where the last equality in (25) holds because n < {"lfor¢ > 0andn > ¢! for ¢ < 0 (otherwise, the minimum radius of

curvature R may be of order h or smaller).
In the coordinates (n, s), the Helmholtz equation becomes

1] 0 Hau +8 1 ou R0 S =f (26)
Hy [ on \ “on ds \ H, ds m T

where Hy = H,(n, s) is given by (25), and we have taken into account that H, = 1. Eq. (26) will be used for building the
equation-based extension of a given & from the continuous boundary I" to the nodes of the grid boundaries y; and yy. If,
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in particular, I" is a circle of radius R, then the foregoing general constructs transform into the corresponding constructs for
polar coordinates [13,14]. In this case, the curvature ¢ of (24) does not depend on s:

_ 1
¢ = R’
and consequently [see formula (25)],
n R+n r
H = 1 _—= = -
s=1+3 R R

Then, according to (26), we can write:

Au—R 3 (rou +8 R du 19 rau +R282u
" rlon\Ron as\ras)| " ron\ on r2 9s2°

Finally, we have n = r — R so that ;—n = % and s = R6 so that % =
A 10 ( du N 1 8%u
u=-——|[r— —-——.
ror \_ or r2 062

5.2. Equation-based extension

12, which yields:

Given & -, we define a new smooth function v = v(n, s) in the vicinity of I" by means of the Taylor formula:

19'v(0, s) o
on! '

v(n,s) = v(0,s) + Z (27)

The zeroth and first order derivatives in (27) coincide with the respective components of &

dv (0,
vé 2 = £1(5).
n

All higher order derivatives in formula (27) are determined with the help of Eq. (26) applied to v. We multiply both sides of
(26) by Hs and obtain

v(0,s) = &(s) and

82v+3H53v+ Jd 1 8v+132 L HR He S
a2 —— | =+t == kv =
*on2 ' 9n dn  \dsH;) ds = Hsds2 ’
where < ‘)HS = —(s) and % H = %g/ (s), see formula (25). Then, we solve for the second derivative with respect to n, which
yields: ’
% ¢ v ng'(s)dv 1 9%
— =) — KM+ — — — e — — ——— 28
87’!2 f( ) ( ) + Hs m Hs3 3s HSZ 852 ( )
Consequently,
D) 250(3)

o2 =1(0,s) — k*(0, $)&(s) + £ (5)&1(s) —
Next, we differentiate Eq. (28) with respect to n:

83v_8f 50V ak +<8 1)(7 {82

— = —k*— —2k—v
on3  9n on on on H H, on?

1 N 9 1 v a 1\d* n¢ % 1 9%
J— R— n [ — —_— [ — S —
¢ H? an H3 as anH2) 32 H? ands  H? dnos?

af L ov ok ov ¢

=2 R ke =
on on <8nv+H52 8n+H an?
1 0 1 v 2c 9% ng v 1 3%
—i =+ ==z e — - — (29)
H? anH2)) s H} 3s> H? dnds H2 dnds?

and substitute n = 0 to get:

3 2 2 2
8°0(0. 5) g_2,<g§0(s)+<§ RN U CT R ORI (OB 10}

on3 on on? as 0s2 052
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Similarly, the fourth normal derivative is obtained by differentiating (29) with respect to n:
4 2 2 2 3 2 2
ggf((gk) +kgn§)v+(;g_4kg;;)a F (o)
v 3¢ (v 9%v 3¢ dv 6¢2 9%v
+I§5 on3 Ii; (§+n<358n+; 8s>>_1-i4852
I (2 9%v S 3¢ v +n( 3% 3¢ 9%v . 322 3v>> 4 93v 1 9%

~ H3 \"9son | H; 9s 9san?> ' H, 0son ' H2 0s)) H30onds?  H? an?ds?
and substituting n = 0, which yields:

4 2 2 2
YvO.5) 0T, ((ak) + kak) Eo(s) + (2;3 = 4kg—:§> £ ) + (202 —12) 009

on* an? on on?
{331}(0,5) 3 6“,350(5) L 20%80) 2{,351(5) 4 P&(s)  3%(0,9)
oan3 ds 952 s 952 an29s?
The quantity 3:’]”;35'? is derived by differentiating (28) twice with respect to s:

v 9% ak\2 9%k ¢ 2n(¢) v
—— =L 2((Z) +k— > H, =
on%9s>  9s? (83) * os? ) " * H? * H? (Hs +nt) 0
n n? ok ang 1202 (¢) L\ 8%
_ H n 9 " 17 - k -
<H§<§+"“+ 5(§))+ as>a (H§+ TR J

5n’ 3%v 1 3% ¢ one’\ v ¢ v
T ae mae T \gt ;e T 2
H? 0s HZ 3s H HZ ) onds ~ Hg onds

and substituting n = 0:

9*v(0, s) d%f 5 ok
an29s2  9s? ds
Ik d&o(s) ,9%0(s) 3% (s) ,081(s) 9%&1(s)
— 4k— —k 2 .
ds 0s 0s? 0s* + 0s +e 0s2
Higher order derivatives (e.g., for the sixth order scheme) can be obtained in the same manner.

We emphasize that formula (27) is not an approximation of a given v(n, s) by its truncated Taylor’s expansion. It is rather
the definition of a new function v(n, s). This function is used for building the equation-based extension of &~ from I” to y;:

2k

)So()-i-é“”

def
&, = EXV% Zo(n,9)| . (30)

In other words, extension (30) is obtained by drawing a normal from a given node of y, to I', see Fig. 5, and then using the
Taylor formula with higher order derivatives computed by differentiating the governing equation (26).

6. Results

We consider the following problem [cf. formula (2)]:

Au+ ku =0, X € 2,
Au+ki(®*u=0, x¢c 4, (31)
Au+k®)?u=0, xe 02,

driven by the incident wave un® = efkoRxcost+ikoRysin® ywhere § denotes the angle of incidence. The wavenumber for the
exterior domain £2g is constant while the wavenumber for the interior £2, and intermediate §2; domains varies:

k(%) = ke 1000 g e (1,2}, (32)

where r; = 1.6 and I~<1 is a parameter that assumes different values for different simulations described below. In what
follows, except for the last example, we solve a simplified problem (31) for several irregular shapes of the interface
I' =TI = {R(s) = (R(s), Ry(s))} between §2y and £24, with no additional interface I inside I'j. In the last example,
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(a) Cartesian grid. (b) Polar grid.

Fig. 6. The grid boundaries for the kite on a 33 x 33 discretization grid.

2.8
2.6
2.4 -
2.2~

(@ ko = 1and k; = 3.

9.5 -

(b) ko = 5 and k; = 10.

Fig. 7. The wave number k for the kite.
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(a) Real part. (b) Imaginary part.

(c) Absolute value.

Fig. 8. Total field for the transmission and scattering of a plane wave about a kite at the angle of incidence 6 = 0°, with ko = 5 and k; = 10.

Table 1
Fourth order grid convergence for the transmission and scattering of a plane wave with the incidence angle & = 0° about a kite.
Grid ko =1,k =3,M =61 ko =5,k = 10,M = 64 ko = 10, k; = 20,M = 67
luh — u?M| o Rate fluf — 12" oo Rate luh — u?"| o Rate
Exterior
64 x 64 6.294093e+00 - 5.261709e+03 - 1.869403e+03 -
128 x 128 5.798326e—03 10.08 7.493228e—01 12.78 2.575746e+00 9.50
256 x 256 5.719824e—04 3.34 8.757690e—03 6.42 1.919236e—01 3.75
512 x 512 1.484623e—05 527 5.326607e—04 4.04 3.126876e—03 5.94
1024 x 1024 8.515695e—07 4.12 2.078834e—05 4,68 2.377990e—04 3.72
2049 x 2049 3.917679e—08 4.44 1.011240e—06 4.36 1.242605e—05 426
Interior
64 x 64 4.148434e+01 - 1.406104e+05 - 1.224631e+04 -
128 x 128 3.156142e—02 10.36 3.398898e-+00 15.34 3.117782e+00 11.94
256 x 256 4.703980e—03 2.75 1.131129e—01 491 8.350206e—01 1.90
512 x 512 2.095950e—05 7.81 6.704542e—04 7.40 5.691779e—03 7.20
1024 x 1024 7.021794e—07 4.90 1.839269e—05 5.19 2.207484e—04 4.69
2049 x 2049 4.131632e—08 4.09 9.240163e—07 4.32 8.825747e—06 4.64

we solve a full fledged formulation with two interfaces, I'> and Iy, and multiple scattering. Since the exact solution u of
problem (31) is typically not known, we cannot directly observe or quantify the grid convergence:

lu—u®|—0 ash— o0, (33)
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(a) Cartesian grid. (b) Polar grid.
Fig. 9. The grid boundaries for the submarine on a 33 x 33 discretization grid.
Table 2
Fourth order grid convergence for the transmission and scattering of a plane wave about a submarine at the angle of incidence 6 = 0°.
Grid ko =1,k =3,M =90 ko =5,k = 10,M = 95 ko = 10, k; = 20, M = 100
luh — u?| Rate lu" — u?") o Rate lu" — u?M| Rate
Exterior
64 x 64 2.295752e+-01 - 2.237487e+00 - 9.916726e—01 -
128 x 128 1.375159e+02 —2.58 1.619068e+03 —9.50 3.583345e+4-05 —18.46
256 x 256 4.990559e—01 8.11 3.935502e+00 8.68 2.036714e+-00 17.42
512 x 512 1.290265e—03 8.60 8.432259e—03 8.87 3.475999e—02 5.87
1024 x 1024 1.293954e—05 6.64 6.619289e—05 6.99 1.481051e—04 7.87
2049 x 2049 4.003078e—07 5.01 2.210780e—06 4.90 5.048151e—06 4.87
Interior
64 x 64 7.864884e+00 - 9.351113e—01 - 9.979765e—01 -
128 x 128 4.266917e+03 —9.08 2.537239e+05 —18.05 3.109921e+-07 —24.89
256 x 256 5.132072e—01 13.02 5.635594e+00 15.46 2.392006e+-00 23.63
512 x 512 1.713991e—03 8.23 2.500136e—02 7.82 7.836997e—02 493
1024 x 1024 6.527788e—05 471 7.829261e—04 5.00 2.928307e—03 4,74
2049 x 2049 5.213601e—07 6.97 2.894848e—06 8.08 7.650070e—06 8.58
Table 3
Fourth order grid convergence for the external scattering of a plane wave about a submarine at the angle of incidence 6 = 0°.
Grid ko=1,M =095 ko = 5,M = 100 ko = 10, M = 105
lu" — u?"| Rate luh — u?| Rate lu" — u?") s Rate
64 x 64 1.051374e+08 - 1.052972e+07 - 8.293744e+05 -
128 x 128 1.259820e+01 22.99 6.467096e+-01 17.31 1.716566e+02 12.24
256 x 256 6.211242e—03 10.99 1.791608e—02 11.82 4.192448e—02 12.00
512 x 512 6.969940e—04 3.16 1.789315e—03 3.32 3.971143e—03 3.40
1024 x 1024 4.196957e—05 4.05 9.784597e—05 4.19 2.377339e—04 4.06
2049 x 2049 1.841662e—06 451 5.761461e—06 4.09 1.159269e—05 4.36

where u® denotes the approximate solution obtained on the grid of size h. Instead, we assess the grid convergence by
evaluating the norm of the difference between two succeeding approximate solutions obtained on a sequence of refined

grids:

Ju® —u®?| -0 ash— 0.

(34)

Clearly, proper grid convergence in the sense of (33) implies (34). So, relation (34) provides a necessary condition for
convergence. Moreover, if the actual convergence (33) is characterized by a certain rate, then the rate of convergence in
the sense of (34) is at least as fast. Thus, all the examples that we present, in this section, show a fourth order convergence

rate.



90

M. Medvinsky et al. / Wave Motion 62 (2016) 75-97

28
26
24
22

18 T
1.6 - ‘
14
12

127

(@ ko = 1and k; = 3.

10 —,
9.5 ~

(b) ko = 5and k; = 10.

Fig. 10. The wave number k for the submarine.

Table 4
Fourth order grid convergence for the transmission and scattering of a plane wave with the incidence angle & = 0° about a star with rounded edges.
Grid ko=1,k =3,M =89 ko =5,k = 10, M = 97 ko = 10, k; = 20, M = 100
[ — w2 Rate lu" — 12| Rate " — u" oo Rate
Exterior
64 x 64 1.897713e+01 - 1.359849e+01 - 4.464070e+02 -
128 x 128 6.274128e+00 1.60 6.472424e+-00 1.07 4.617413e+02 —0.05
256 x 256 2.693255e—03 11.19 7.835759e—03 9.69 7.305258e—02 12.63
512 x 512 1.266509e —05 7.73 1.072922e—04 6.19 5.144006e—04 7.15
1024 x 1024 6.169030e—07 4.36 4.556798e—06 4.56 2.833560e—05 4.18
2049 x 2049 3.215375e—08 4.26 3.142369e—07 3.86 1.436230e—06 4.30
Interior
64 x 64 3.440719e+-02 - 3.558703e+-02 - 9.670006e+-03 -
128 x 128 1.784930e+01 4.27 2.146546e+-01 4.05 1.611719e4-03 2.58
256 x 256 3.058072e—03 12.51 2.875988e—02 9.54 1.764544e—01 13.16
512 x 512 1.251820e—05 7.93 3.272978e—04 6.46 1.063229e—03 7.37
1024 x 1024 6.189435e—07 434 4.147246e—06 6.30 2.641565e—05 5.33
2049 x 2049 3.395252e—08 4.19 3.026219e—07 3.78 1.437789e—06 4.20

Relation (34) does not provide a sufficient condition for the true convergence in the sense of (33). Rather (34) is similar to
convergence in the sense of Cauchy.?However, condition (34) is easy to check, in a practical setting, when no exact solution
is available. Therefore, we shall use it as a convergence indicator. The norm in (34) is chosen as the maximum norm, || - |-

2 Condition (34) is somewhat weaker than convergence in the sense of Cauchy, because we only consider pairs of succeeding grids (h, h/2) rather than
all the grids finer than a given h.
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= =

(a) Real part. (b) Imaginary part.

-

(c) Absolute value.

Fig. 11. Scattered field for the external scattering of a plane wave about a submarine at the angle of incidence # = 0° and with ky = 10.
6.1. Akite

The first case is an interface in the form of a kite given by:
I =R(t) = (Re(t), Ry(t)) = (cost + 0.65cos 2t — 0.65, 1.5sint), 0 <t <27.

For the interior auxiliary problem, we take a Cartesian grid on the rectangle [—1.7, 1.2] x [—1, 7, 1.7]. For the exterior AP,
we take a polar grid on the annulus {0.8 < r < 2.2}. The continuous boundary I and the grid boundaries j, and y; are
shown in Fig. 6. Note, the auxiliary domain should allow for at least a few grid nodes between I" and the outer boundary,
so that the grid boundary y; or y is fully inside the grid. The variable wave number for the entire domain is shown in Fig. 7
for two different cases: ko = 1 and k; = k;(x) given by (32) with ky = 3in Fig. 7(a), and kg = 5, ki = 10in Fig. 7(b). In
Fig. 8 we display the solution driven by the plane wave at an angle of incidence & = 0°. Table 1 presents the results for the
grid convergence for three different choices of the exterior and interior wave number.

6.2. A submarine-like scatterer

Next we consider a submarine-like interface defined by:

I =R(t) = (Re(t), Ry(t)) = [ 1.8 cost, 0.36sint - | 1+ 2 (cos§+sin§)1so
= = X s Ry = . ,0. ﬁ ,

where 0 < t < 2. The interior AP is solved on the rectangle [—2.2, 2.2] x [—0, 6, 1.2] using a Cartesian grid. The exterior
AP is solved on a polar grid in the annulus {0.3 < r < 2.2}. Fig. 9 presents the geometry of the interface I" and the grid sets.
Fig. 10 shows the variation of the wave number k across the computational domain for two cases: kg = 1 and k; = k;(x)
with k; = 3 (see formula (32)) is in Fig. 10(a), and kg = 5, k; = ky(x) with ki = 10isin Fig. 10(b).
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(a) Real part. (b) Imaginary part.
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(c) Absolute value.

Fig. 12. Total field for the transmission and scattering of a plane wave about a submarine at the angle of incidence # = 0°, with ko = 5 and k; = 10.

(a) Cartesian grid. (b) Polar grid.

Fig. 13. The grid boundaries for the star with rounded edges on a 33 x 33 grid.

For the case of a submarine-like body, we solve two problems: an external scattering problem with a homogeneous
Dirichlet boundary condition at the surface I and a transmission/scattering problem similar to that solved in Section 6.3
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(b) ko = 5and k; = 10.
Fig. 14. Profile of the variable wave number k for the star with rounded edges.

for the star interface and in Section 6.1 for the kite interface. The external scattering solution for kg = 10 and 6 = 0° is
presented in Fig. 11. Table 3 demonstrates the grid convergence for three different choices of the exterior wave number.
The transmission/scattering solution for the submarine is shown in Fig. 12, while Table 2 summarizes the grid convergence
results for this case.

6.3. A star with rounded edges

The third case is an interface shaped as a five-ray star with rounded edges to make it smooth. It is shown in Fig. 13 and
is given by the following parametric expression:

I' = R(t) = (R«(t), Ry(t)) = (% cos(4t) + é sin(t), écos(t) + % sin(4t)) , 0<t<g2m.

For the interior auxiliary problem, we choose a Cartesian grid on the square [—1.7, 1.7] x [—1, 7, 1.7]. For the exterior AP,
we choose a polar grid on the annulus {0.3 < r < 2.2}. The grid boundaries y, and yy defined by formulae (8) and (10),
respectively, are also shown in Fig. 13 for the case where the dimension of the main discretization grid is 33 x 33. The
variable wave number for the entire domain is shown in Fig. 14: specifically, in Fig. 14(a) the wave numbers are kg = 1 and
k1 = kq(x) with ky = 3, see formula (32), and in Fig. 14(b) we have ky = 5 and ky = 10.In Fig. 15, we present the solution
for the incident plane wave at & = 0°. Table 4 demonstrates the grid convergence for various sets of parameters.

6.4. Multiple scattering

The last case is a multiple scattering problem, with interface I' = I, U I'y where I3 is a five-ray star with rounded
edges defined in the beginning of Section 6.3 and I7 is a circle of radius r = 2. The schematic is shown in Fig. 16. For the
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(a) Real part. (b) Imaginary part.

(c) Absolute value.

Fig. 15. Total field for the transmission and scattering of a plane wave about a star with rounded edges at the angle of incidence § = 0°, with ko = 5 and
ky = 10.

444+ 1 2
PR P A

Fig. 16. The grid boundaries for the star with rounded edges inside a circle on a 33 x 33 grid.

exterior auxiliary problem, we choose a polar grid on the annulus {1.8 < r < 2.5}. For the interior auxiliary problem we
choose exactly the same interior auxiliary problem as in Section 6.3, it is depicted in Fig. 13(a) and we choose a Cartesian
grid on the square [—1.7, 1.7] x [—1.7, 1.7]. For the intermediate auxiliary problem we choose a Cartesian grid on the
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k: Int:;, 10, Med: 5, Ext 1

(a)ko = 1,k; = 5and k, = 10.

k: Int:,20, Med: 15, Ext 10

(b) ko = 10,k; = 15 and k, = 20.
Fig. 17. Profile of the variable wave number k for the star with rounded edges.

square [—2.2, 2.2] x [—2.2, 2.2]. The grid boundaries y; and y, defined by formulae (8) and shown in Figs. 16 and 13(a)
respectively, for the case where the dimension of the main discretization grid is 33 x 33. The grid boundary y; is defined by
(10). The variable wave number for the entire domain is shown in Fig. 17; see also Fig. 1 for the definition of kg, k{1, and k-.
Specifically, in Fig. 17(a) the wave numbers are kg = 1, k; = k1(x) and k, = kp(x) with ki =5andk, = 10 respectively,
see formula (32), and in Fig. 17(b) we have ko = 20, k; = 50, and k, = 10. In Fig. 18, we present the solution for the incident
plane wave at & = 40°. Table 5 demonstrates the grid convergence for various sets of parameters.

7. Discussion

We have described a combined implementation of the method of difference potentials together with a compact high
order accurate finite difference scheme for the numerical solution of wave propagation problems in the frequency domain
for the case of general geometries. The Helmholtz equation is approximated on a regular structured grid, which is efficient
and entails a low computational complexity. At the same time, the method of difference potentials guarantees no loss
of accuracy for curvilinear non-conforming boundaries. We can also handle variable coefficients that describe a non-
homogeneous medium. Thus, this methodology provides a viable alternative to both boundary element methods and
high order finite element methods. Among the advantages of the proposed methodology are its capability to accurately
reconstruct the solution and/or its normal derivative directly at the interface (without having to interpolate and/or use
one-sided differences, such as done in conventional finite differences and finite elements).

The performance of our method and its design high order accuracy have been corroborated numerically by solving a
variety of 2D transmission/scattering problems, including problems that involve multiple scattering, for smooth general
shaped domains with a varying wavenumber using only Cartesian and polar grids.

The case of general shaped domains with the boundaries that are not necessarily smooth has not been investigated in the
paper. There are two main differences between this case and the case of smooth boundaries that we have analyzed. On one
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(a) Real part. (b) Imaginary part.

(c) Absolute value.

Fig. 18. Total field for the transmission and scattering of a plane wave about a star with rounded edges inside circle at angle of incidence 6 = 40°, with
ko = 5,k1 = 10and k2 = 15.

Table 5
Fourth order grid convergence for the multiple scattering of a plane wave with the incidence angle & = 40° through a star with rounded edges inside circle.
Grid ko =1,k; =5,k; = 10,M = 90 ko =5,k = 10,k, = 15,M = 96 ko = 10, k; = 15,k, = 20, M = 101
flul — w2 oo Rate flul — u?"|| o Rate flul — u?"|| oo Rate
Exterior
64 x 64 8.576803e+00 - 8.452339e+00 - 4.131025e+00 -
128 x 128 9.166389e+-00 —0.10 4.221633e+00 1.00 1.989940e+00 1.05
256 x 256 2.558925e—03 11.81 1.578030e—03 11.39 2.085242e—02 6.58
512 x 512 9.164032e—05 4.80 6.357957e—05 4.63 8.377927e—04 4.64
1024 x 1024 6.080010e—06 391 3.995037e—06 3.99 5.260751e—05 3.99
2049 x 2049 3.442998e—07 4.14 2.587757e—07 3.95 3.278522e—06 4.00
Intermediate
64 x 64 3.625781e4-01 - 7.146890e+-03 - 3.489656e4-03 -
128 x 128 5.437903e+-01 —0.58 1.871236e+03 1.93 1.341972e+03 1.38
256 x 256 3.890433e—03 13.77 8.918431e—03 17.68 9.264290e—02 13.82
512 x 512 1.327692e—04 4.87 6.825677e—05 7.03 9.212461e—04 6.65
1024 x 1024 8.830146e—06 391 4.288235e—06 3.99 5.759067e—05 4.00
2049 x 2049 4.962013e—07 4.15 2.776753e—07 3.95 3.595732e—06 4.00
Interior
64 x 64 6.798173e+-02 - 8.037889e+-04 - 1.666677e4-05 -
128 x 128 6.253578e+-02 0.12 1.434150e+-04 2.49 8.019034e+-04 1.06
256 x 256 4.137007e—03 17.21 5.293907e—03 21.37 7.849041e—02 19.96
512 x 512 1.411678e—04 4.87 8.649081e—05 5.94 3.729582e—04 7.72
1024 x 1024 9.542619e—06 3.89 2.919410e—06 4.89 2.282353e—05 4.03

2049 x 2049 5.394062e—07 4.14 1.913741e—-07 3.93 1.489259e—06 3.94
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hand, if the boundary is only piece-wise smooth rather than smooth (e.g., it has corners), then the systems of basis functions
(Section 4.2), as well as the curvilinear coordinates and equation-based extensions (Section 5), need to be constructed
independently for each smooth interval of the boundary. Other components of the method of difference potentials, such
as the auxiliary problem and the definitions of the grid sets (Section 4.1), remain unaffected. Altogether, the corresponding
modifications are substantial but well understood. They have been introduced and successfully tested previously in the
work [15], where we studied problems with non-standard boundary conditions (e.g., Dirichlet on one part of the boundary
and Neumann on the other part of the boundary), and in the work [ 16], where we allowed for discontinuous boundary data.
On the other hand, in the case of a boundary with corners (in particular, re-entrant corners), the solution itself frequently
becomes singular. For singular solutions, the finite difference schemes of Section 3 (as well as many other schemes) will no
longer be consistent, and the overall solution accuracy will deteriorate or may even be completely lost. To avoid this, the
solution needs to be regularized prior to having it approximated numerically. This is what we did in the work [16], where
the singularities in the solution were due to discontinuities in the boundary data. The regularization was done by truncating
several leading terms of the asymptotic expansion near the singularity. We then obtained the design fourth order accuracy
of the numerical method. When the singularities are due to the geometric features of the boundary, the regularization of
the solution proves more subtle because a certain part of the regularizing expansion cannot be determined ahead of time.
This issue requires a thorough investigation that is beyond the scope of the current work. Once complete, the results will be
presented in a separate publication.
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