

3 Inverse functions (1.6)

Ex 1. Do all graphs below describe a function?

Solution: No, f and g aren't functions, because of multiply values of y for the x.

Note: Function should have only one value for each x in the domain.

Vertical Line Test: A curve in the xy-plane is the graph of function of x if and only if no vertical line intersects the curve more than once.

DEF: A function is said to be **one-to-one** if it takes different values for any $x \neq y$, i.e. $f(x) \neq f(y)$.

Horizontal Line Test: A one-to-one function is never intersects with horizontal line more than once.

Ex 2. Which function in the graph above is one-to-one?

Solution: a, d

Ex 3. A strictly monotonic (either increasing or decreasing) function is one-to-one.

DEF: A function $f:A \rightarrow B$ is said to be **onto** (B) if its range is its image.

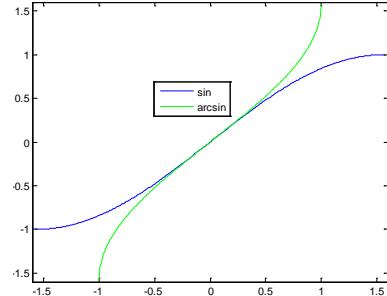
Ex 4. a) Which function in the graph above is onto \mathbb{R} ? b) And which is onto \mathbb{R}^+ ?

Solution: a) a and d onto \mathbb{R} , b) b and h onto \mathbb{R}^+ .

DEF: Let $f:A \rightarrow B$ be a function which image is B. A function $g:B \rightarrow A$ is said to be an inverse function of f if for every $y=f(x)$ it gets $x=g(y)$. The relationships between f

and it's inverse g are reciprocal\mutual; that is if g is the inverse function of f , then f is the inverse function of g . One denotes inverse function $f^{-1}(x)$.

So we have: $f(f^{-1}(x)) = x = f^{-1}(f(x))$

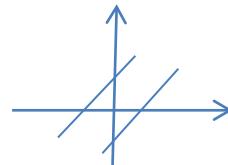

NOTE: If a function f is **one-to-one** and **onto** then f^{-1} exists.

NOTE: $f^{-1}(x) \neq \frac{1}{f(x)} = [f(x)]^{-1}$

Note: The graph of inverse function obtained by reflecting the graph of f about the line $x=y$.

Ex 5. Graph of \sin and \arcsin

Algorithm: How to find inverse function (of a one-to-one function).



1. Write $y=f(x)$
2. Solve this equation for x in term of y (if possible)
3. To express f^{-1} as a function of x , interchange x and y . The resulting equation is $y=f^{-1}(x)$

Ex 6. Find an inverse function of $f(x)=x+1$. Sketch them both.

Solution:

1. $y = x+1$
2. $x = y-1$
3. $y = x-1 = f^{-1}(x)$

Ex 7. Find an inverse function of $f(x)=2+\sqrt{2x+3}$. Sketch them both.

1. $y = 2 + \sqrt{2x+3}$
2. $y-2 = \sqrt{2x+3} \Rightarrow (y-2)^2 = 2x+3 \Rightarrow x = \frac{(y-2)^2 - 3}{2}$
3. $y = \frac{(x-2)^2 - 3}{2} = f^{-1}(x)$

Verification: $f(f^{-1}(x)) = f\left(\frac{(x-2)^2 - 3}{2}\right) = 2 + \sqrt{2\frac{(x-2)^2 - 3}{2} + 3} = 2 + \sqrt{(x-2)^2} = 2 + x - 2 = x$

$$f^{-1}(f(x)) = f^{-1}\left(2 + \sqrt{2x+3}\right) = \frac{(2 + \sqrt{2x+3} - 2)^2 - 3}{2} = \frac{2x+3-3}{2} = x$$