

6 Tangent and Velocity(2.1)

Self reading of chapter 2.1

7 Limit of Function(2.2)

Ex 1. Consider function $f(x) = \frac{x^2 - 3x + 2}{x - 1}$. The function $f(x)$ is definitely undefined for $x=1$.

Let's investigate the behavior of $f(x)$ for values near $x=1$. The following table shows values $f(x)$ for values of x close to but not equal to 1.

x	0.8	0.9	0.99	.999	1.001	1.01	1.1	1.2
$f(x)$	-1.2	-1.1	-1.01	-1.001	-0.999	-0.99	-0.9	-0.8

One can see from the table that $f(x)$ getting close to -1 when x approaches 1. For a simple example like this, it is possible to get the same result algebraically since

$$\frac{x^2 - 3x + 2}{x - 1} = \frac{(x-1)(x-2)}{x-1} = x-2, \text{ so this is a line with a hole in } x=1.$$

We shall write $\lim_{x \rightarrow 1} f(x) = \lim_{x \rightarrow 1} \frac{x^2 - 3x + 2}{x - 1} = \lim_{x \rightarrow 1} \frac{(x-1)(x-2)}{x-1} = \lim_{x \rightarrow 1} x-2 = -1$

Def: The equation $\lim_{x \rightarrow a} f(x) = L$ means: “the limit of $f(x)$ as x approaches a equals L ”.

Note, the function $f(x)$ isn't required to be defined at $x=a$. It just has to get closer to L as x gets closer (but not equal) to a .

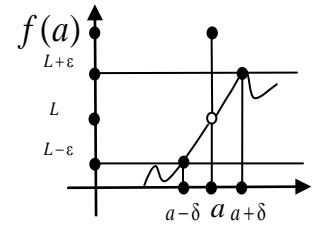
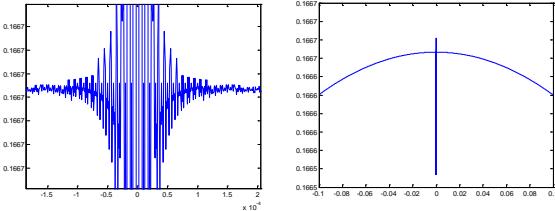
Note: A more rigorous (ε, δ) -definition of limits talking about existence of an open interval $I_a = (a - \delta, a + \delta)$ for any choice of arbitrary small interval $I_L = (L - \varepsilon, L + \varepsilon)$ (where both $\varepsilon, \delta > 0$), such that $\forall x \in I_a$ imply $f(x) \in I_L$.

Ex 2. Let $f(x) = \frac{\sqrt{x^2 + 9} - 3}{x^2}$, find $\lim_{x \rightarrow 0} f(x)$

The algebraic approach gives

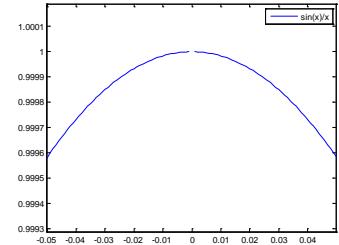
$$\lim_{x \rightarrow 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} = \lim_{x \rightarrow 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} \frac{\sqrt{x^2 + 9} + 3}{\sqrt{x^2 + 9} + 3} = \lim_{x \rightarrow 0} \frac{1}{\sqrt{x^2 + 9} + 3} = \frac{1}{6}$$

However when one uses a table for really small values of x we may arrive in the wrong answer (this is problem of computer accuracy, in numerator we get $3.0 \dots 0 - 3$, so it considered zero). See also the 2 fine scaled graphs of the function above.



x	$\pm 5.E-06$	$\pm 1.E-06$	$\pm 5.E-07$	$\pm 1.E-07$	$-5.E-08$	$-1.E-08$	$1.E-09$	$5.E-09$
f(x)	0.1667	0.1665	0.1670	0.1776	0.1776	0.0000	0.0000	0.0000

Some limits are easy to get from table or sketch like even non polynomial ones like $\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1$ (see the image), but some may be tricky and some not exists, and some may mislead like in following example.

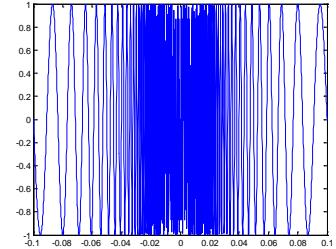


Ex 3. If we create a table to find $\lim_{x \rightarrow 0} \sin \frac{\pi}{x}$, one get that for $x = \frac{1}{n}$ for any integer $n > 0$, one gets $\sin n\pi = 0$ which can mislead to the **WRONG** guess

that $\lim_{x \rightarrow 0} \sin \frac{\pi}{x} = 0$. This is wrong because for example for

$x = \frac{2}{10^n + 1}$ one gets $\sin(10^n + 1) \frac{\pi}{2} = 1$ and for $x = \frac{2}{3(10^n + 1)}$ one

gets $\sin(10^n + 1) \frac{3\pi}{2} = -1$. Actually the function $\sin \frac{\pi}{x}$ is highly oscillating near $x=0$ and therefore the limit doesn't exist.

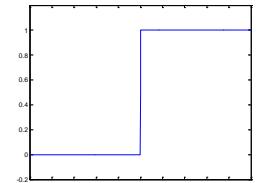


Def: One Sided Limits: The equation $\lim_{x \rightarrow a^+} f(x) = L$ means: “the limit of $f(x)$ as x approaches a from the right equals L ”. Similarly $\lim_{x \rightarrow a^-} f(x) = L$ means: “the limit of $f(x)$ as x approaches a from the left equals L ”.

Ex 4. For a Heaviside function $f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \geq 0 \end{cases}$ the limit

$\lim_{x \rightarrow 0} f(x)$ isn't exists, because of the jump. However $\lim_{x \rightarrow 0^-} f(x) = 0$

and $\lim_{x \rightarrow 0^+} f(x) = 1$. This gives a hint for the following theorem.



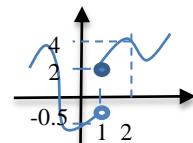
Theorem: A limit $\lim_{x \rightarrow a} f(x)$ is exists if and only if one sided limits exists and equal, i.e.

$$\lim_{x \rightarrow a^-} f(x) = L = \lim_{x \rightarrow a^+} f(x).$$

Ex 5. In the $f(x)$ func on the graph $\lim_{x \rightarrow 1} f(x) = 0.5 \neq 2 = \lim_{x \rightarrow 1^+} f(x)$,

therefore $\lim_{x \rightarrow 1} f(x)$ not exists (there is a jump), but

$$\lim_{x \rightarrow 2^-} f(x) = 4 = \lim_{x \rightarrow 2^+} f(x) \Rightarrow \lim_{x \rightarrow 2} f(x) = 4.$$



$$\text{Ex 6. } \lim_{x \rightarrow a} c = c; \quad \lim_{x \rightarrow a} x = a; \quad \lim_{x \rightarrow a} x^2 = a^2; \quad \lim_{x \rightarrow a} \frac{1}{x} = \frac{1}{a}$$

Ex 7. Let $g(x) = f(x+c)$. Show that if $\lim_{x \rightarrow c} f(x) = L$ then $\lim_{x \rightarrow 0} g(x) = L$.

Solution: $\lim_{x \rightarrow 0} g(x) = \lim_{x \rightarrow 0} f(x+c) = \lim_{x+c=y \rightarrow c} f(y) = L$

7.1 Limit Laws(2.3)

Def: Let c be a constant and $\lim_{x \rightarrow a} f(x), \lim_{x \rightarrow a} g(x)$ exists and finite. Then

$$1) \lim_{x \rightarrow a} [f(x) \pm g(x)] = \lim_{x \rightarrow a} f(x) \pm \lim_{x \rightarrow a} g(x)$$

$$2) \lim_{x \rightarrow a} cf(x) = c \lim_{x \rightarrow a} f(x)$$

$$3) \lim_{x \rightarrow a} f(x)g(x) = \lim_{x \rightarrow a} f(x) \lim_{x \rightarrow a} g(x)$$

$$4) \lim_{x \rightarrow a} \frac{f(x)}{g(x)} \stackrel{\lim_{x \rightarrow a} g(x) \neq 0}{=} \frac{\lim_{x \rightarrow a} f(x)}{\lim_{x \rightarrow a} g(x)}$$

$$\text{Ex 8. } n \in \mathbb{Z}^+, \lim_{x \rightarrow a} x^n = \lim_{x \rightarrow a} x \lim_{x \rightarrow a} x^{n-1} = \lim_{x \rightarrow a} x \lim_{x \rightarrow a} x \lim_{x \rightarrow a} x^{n-2} = \left(\lim_{x \rightarrow a} x \right)^2 \lim_{x \rightarrow a} x^{n-2} = \dots = \left(\lim_{x \rightarrow a} x \right)^n = a^n$$

$$\text{Ex 9. Similarly } n \in \mathbb{Z}^+, \lim_{x \rightarrow a} f^n(x) = \left(\lim_{x \rightarrow a} f(x) \right)^n$$

Ex 10. Evidence $\lim_{x \rightarrow 3} x = 3$ and $\lim_{x \rightarrow 3} x^3 = 3^3 = 27$, see it on graph of x^3 .

$$\text{Ex 11. Another evidence } \lim_{x \rightarrow 3\pi/2} \sin^2 x = \left(\lim_{x \rightarrow 3\pi/2} \sin x \right)^2 = (-1)^2$$

$$\text{Ex 12. } n \in \mathbb{Z}^+, \lim_{x \rightarrow a} \sqrt[n]{x} = \sqrt[n]{\lim_{x \rightarrow a} x} = \sqrt[n]{\lim_{x \rightarrow a} \left(\sqrt[n]{x} \right)^n} = \sqrt[n]{\lim_{x \rightarrow a} x} = \sqrt[n]{a}, \text{ for even } n \text{ assume } a > 0$$

$$\text{Ex 13. Similarly } n \in \mathbb{Z}^+, \lim_{x \rightarrow a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \rightarrow a} f(x)}, \text{ for even } n \text{ assume } \lim_{x \rightarrow a} f(x) > 0$$

Def: Direct Substitution Property: if $f(x)$ ‘have no problem at a ’ then

$\lim_{x \rightarrow a} f(x) = f(a)$. For now we consider that roots, polynomial, rational and

trigonometrical functions ‘have no problem at a ’ if defined at a .

$$\text{Ex 14. } \lim_{x \rightarrow 5} \frac{(x-2)(x-3)}{x} = \frac{(5-2)(5-3)}{5} = \frac{3 \cdot 2}{5} = \frac{6}{5}$$

Def: if $f(x) = g(x)$ in an open interval $x \in (a-b, a) \cup (a, a+b)$, then $\lim_{x \rightarrow a} f(x) = \lim_{x \rightarrow a} g(x)$

$$\text{Ex 15. } \lim_{x \rightarrow 0} \frac{(x-5)^2 - 25}{x} = \lim_{x \rightarrow 0} \frac{x^2 - 10x + 25 - 25}{x} = \lim_{x \rightarrow 0} \frac{x^2 - 10x}{x} = \lim_{x \rightarrow 0} x - 10 = -10$$

$$\text{Ex 16. } \lim_{x \rightarrow 2} \frac{(x-2)(x-3)}{x-2} \neq \frac{(0-2)(0-3)}{0-2} = \frac{"0"}{"0"} \text{ however } \lim_{x \rightarrow 2} \frac{(x-2)(x-3)}{x-2} \lim_{x \rightarrow 2} = (x-3) = 0 - 3 = -3$$

$$\text{Ex 17. } \lim_{x \rightarrow 2} \frac{x^2 - 3x + 2}{x^2 - 4} = \lim_{x \rightarrow 2} \frac{(x-1)(x-2)}{(x-2)(x+2)} = \lim_{x \rightarrow 2} \frac{x-1}{x+2} = \frac{1}{4}$$

$$\text{Ex 18. } \lim_{x \rightarrow 1^+} \frac{x-1}{|x-1|} = \lim_{x \rightarrow 1^+} \frac{x-1}{x-1} = 1 \neq -1 = \lim_{x \rightarrow 1^-} \frac{x-1}{-(x-1)} = \lim_{x \rightarrow 1^-} \frac{x-1}{|x-1|}$$

$$\text{Ex 19. } \lim_{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1} = \lim_{x \rightarrow 1} \frac{\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+1)} = \lim_{x \rightarrow 1} \frac{1}{\sqrt{x}+1} = \frac{1}{\lim_{x \rightarrow 1} \sqrt{x}+1} = \frac{1}{1+\sqrt{\lim_{x \rightarrow 1} x}} = \frac{1}{2}$$

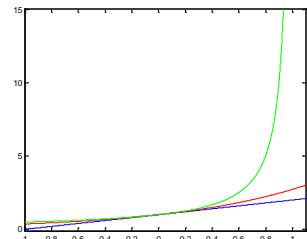
$$\text{Ex 20. Let } f(x) = \begin{cases} 3-x^2 & x \in Q \\ x & x \notin Q \end{cases}, \text{ find } c \text{ such that } \lim_{x \rightarrow c} f(x) \text{ exists.}$$

Solution: Actually we need c such that $\lim_{x \rightarrow c} 3-x^2 = 3-c^2 = c = \lim_{x \rightarrow c} x$, thus

$$3-c^2 = c \Rightarrow c^2 + c - 3 = 0 \Rightarrow c_{1,2} = \frac{-1 \pm \sqrt{1+12}}{2} = \frac{-1 \pm \sqrt{13}}{2}$$

Theorem: If $f(x) \leq g(x)$ in an open interval $x \in (a-b, a+b)$, then $\lim_{x \rightarrow a} f(x) \leq \lim_{x \rightarrow a} g(x)$

The Squeeze Theorem (Other names: Sandwich Thrm, two policemen and a drunk theorem): If $f(x) \leq g(x) \leq h(x)$ in an open interval $x \in (a-b, a+b)$, and $\lim_{x \rightarrow a} f(x) = L = \lim_{x \rightarrow a} g(x)$, then $\lim_{x \rightarrow a} h(x) = L$.



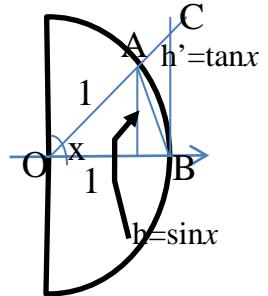
Ex 21. Let see that $\lim_{x \rightarrow 0} \frac{e^{ax} - 1}{x} = a$. Since at $0 \leq ax < 1$ we have $1+ax \leq e^{ax} \leq \frac{1}{1-ax}$ (see the graph), the squeeze theorem provides (in each part of inequality sub 1 and

$$\text{divide by } x: a \leq \frac{e^{ax} - 1}{x} \leq \frac{1}{x} \left(\frac{1}{1-ax} - 1 \right) = \frac{ax}{x(1-ax)} \rightarrow a$$

Ex 22. Let see why $\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1$: Let see the areas of “slice of pie”

$$\text{AOB and triangles AOB and COB: } S_{\pi AOB} = \frac{x}{2\pi} \pi l^2 = \frac{x}{2},$$

$$S_{\triangle AOB} = \frac{1}{2} \cdot OB \cdot h = \frac{\sin x}{2}, \quad S_{\triangle COB} = \frac{1}{2} \cdot OB \cdot h' = \frac{\tan x}{2}.$$



relationship between sizes of these shapes, one write $\sin x < x < \tan x$, next divide all by $\sin x$ to get $1 < \frac{x}{\sin x} < \frac{\tan x}{\sin x} = \frac{1}{\cos x} \xrightarrow{x \rightarrow 0} 1$, by squeeze theorem we got that $\lim_{x \rightarrow 0} \frac{x}{\sin x} = 1$, and the last trick is $\lim_{x \rightarrow 0} \frac{\sin x}{x} = \lim_{x \rightarrow 0} \frac{1}{\frac{x}{\sin x}} = \frac{1}{\lim_{x \rightarrow 0} \frac{x}{\sin x}} = 1$.