

11.3 Derivatives and the Shapes of Curves (4.3)

Rolle's Theorem: Let f be continuous on $[a,b]$ and differentiable on (a,b) . If $f(a) = f(b)$ then there is $c \in (a,b)$ such that $f'(c) = 0$.

Ex 6. If $f'(x) \neq 0, \forall x$ then there is no more than one solution to $f(x) = 0$, since two solutions would imply, by Rolle's Theorem that there is some x s.t. $f'(x) = 0$.

Ex 7. $f(x) = x^3 + x \Rightarrow f'(x) = 3x^2 + 1; \quad x^3 + x = x(x^2 + 1) = 0 \Leftrightarrow x = 0$.

Ex 8. Show that there is exactly 2 solutions to $f(x) = x - \ln x - 2 = 0$

For $x = e^{-2}$ we get $e^{-2} - \ln e^{-2} - 2 = e^{-2} + 2 - 2 = e^{-2} > 0$, for $x = 1: 1 - \ln 1 - 2 = 1 - 2 = -1 < 0$ and for $x = e^2: e^2 - \ln e^2 - 2 = e^2 - 2 - 2 = (e-2)(e+2) > 0$. Thus we have at least 2 zeros, one in $[e^{-2}, 1]$ and one in $[1, e^2]$.

By Rolle's Theorem there is a zero in the derivative between every pair of zeros in f , but $f'(x) = 1 - \frac{1}{x}$ have only one zero, therefore there is no more than 2 zeros to f .

La-grange's Mean Value Theorem (generalization of Rolle's Thm): Let f be continuous on $[a,b]$ and differentiable on (a,b) . There is $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Def: Function f is increasing (decreasing) in interval I if $x_2 > x_1 \Rightarrow f(x_2) \geq f(x_1)$

$(x_2 > x_1 \Rightarrow f(x_2) \leq f(x_1))$. If we change $<, >$ with \leq, \geq then f is strictly increasing/decreasing.

Increasing/Decreasing Test: If $f'(x) > 0$ ($f'(x) < 0$) on interval then $f(x)$ is increasing (decreasing) on that interval.

One uses MVT to show that the sign of the derivative defines the increasing/decreasing behavior: Let $f'(x) > 0$ on some interval I . Let $[x_1, x_2] \subset I$, so $f(x)$ is differentiable there, and therefore by MVT there is exists $c \in [x_1, x_2]$ such that

$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0$, but this is immediately imply $f(x_2) - f(x_1) > 0$. Thus $f(x)$ is increasing. Similarly, once can show $f'(x) < 0$ implies f decreasing.

The First Derivative Test: Suppose c critical number of continuous function f .

- If f' changes from positive to negative – $f(c)$ is a local maximum
- If f' changes from negative to positive – $f(c)$ is a local minimum
- If f' doesn't change the sign then $f(c)$ has no local max/min.

Concavity:

If f' is increasing (decreasing), a.k.a $f''(c) > 0$ ($f''(c) < 0$) function on an interval I then if concave upward (downward) aka smile(sad) on I . If f'' changes sign near c then there is an inflection point.

The Second Derivative Test: Suppose $f''(x)$ is continuous near c

- If $f'(x) = 0$ and $f''(c) > 0$ then $f(c)$ is local minimum
- If $f'(x) = 0$ and $f''(c) < 0$ then $f(c)$ is local maximum
- If $f'(x) = 0$ and $f''(c) = 0$ or doesn't exist – use another method (FDT)

Alg, Function investigation and Sketching Graph of function:

1. Find domain of definition.
2. Find whether the function is even $f(-x) = f(x)$, odd $f(-x) = -f(x)$ or neither.
3. Find the period p of a function $f(x+p) = f(x)$.
4. Find where the function crosses axes, aka solve $f(0), f(x) = 0$
5. Find asymptotes, a line $l(x)$ if $\lim_{x \rightarrow \pm\infty} |f(x) - l(x)| = 0$ or a line $x = x_0$ if $\lim_{x \rightarrow x_0} |f(x)| = \infty$
6. Do the following derivatives tests:
 - a. Find critical points (end points and where $f'(x) = 0$ or doesn't exist)
 - b. Find where f is increasing $f'(x) > 0$ or decreasing $f'(x) < 0$.
 - c. Define the concavity, $f''(x) > 0$ smiling upward concavity, $f''(x) < 0$ sad downward concavity.
 - d. Classify extreme points Using First and/or Second Derivative tests.
7. Sketch the Graph

Ex 9. Sketch the graph of $f(x) = \frac{x^2 + 1}{2x}$

1. Domain of definition: $x \neq 0$

2. The function is odd: $f(-x) = \frac{(-x)^2 + 1}{-2x} = -\frac{x^2 + 1}{2x} = -f(x)$

3. The function isn't periodic.

4. $f(0)$ isn't defined and $f(x) \neq 0$

5. Asymptotes

$$a = \lim_{x \rightarrow \infty} \frac{f(x)}{x} = \lim_{x \rightarrow \infty} \frac{x^2 + 1}{2x^2} = \lim_{x \rightarrow \infty} \frac{1 + 1/x^2}{2} = \frac{1}{2}$$

$$b = \lim_{x \rightarrow \infty} f(x) - ax = \lim_{x \rightarrow \infty} \left(\frac{x^2 + 1}{2x} - \frac{1}{2}x \right) = \lim_{x \rightarrow \infty} \left(\frac{x^2 + 1 - x^2}{2x} \right) = 0$$

$$\lim_{x \rightarrow 0} |f(x)| = \lim_{x \rightarrow 0} \left| \frac{x^2 + 1}{2x} \right| = \infty$$

6. Do the following derivatives tests:

a. Critical points (no end points) $f'(x) = \frac{4x^2 - 2(x^2 + 1)}{4x^2} = 1 - \frac{x^2 + 1}{2x^2} = \frac{1}{2} - \frac{1}{2x^2}$. $f'(x) = 0$

if and only if $\frac{1}{2} = \frac{1}{2x^2} \Leftrightarrow x = \pm 1$

b. Increasing at $\frac{1}{2} - \frac{1}{2x^2} < 0 \Rightarrow \frac{1}{2} < \frac{1}{2x^2} \Rightarrow x^2 < 1 \Rightarrow -1 < x < 1$,

Decreasing at $\frac{1}{2} - \frac{1}{2x^2} > 0 \Rightarrow \frac{1}{2} > \frac{1}{2x^2} \Rightarrow x^2 > 1 \Rightarrow x > 1 \vee x < -1$.

c. Concavity $f''(x) = \frac{1}{x^3}$, concave upward when $x > 0$, downward when $x < 0$

d. $f''(x) = \frac{1}{x^3} \Big|_{\pm 1} = \pm 1$, thus we have local $\max f = -1, \min f = 1$

Classify extreme points Using First and/or Second Derivative tests.

7. Sketch the Graph

