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12.10 Improper Integrals (5.10) 

Def: Consider that f(x) has a discontinuity c∈ a,b[ ]  , but continues at c ≠ x ∈ a,b[ ] . 

Including the case when c is an end point, i.e. c = a,b( ], a,c = b[ ) . Then f x( )dx
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Another form of improper integral is an integral with infinite limits. It is useful for 
example for calculating probability. The probability that something will 100% happen 

after enough time has the form  of f t( )dt = 1
0

∞

∫ . 

Def: 1) If f x( )dx
a

t

∫  for t ≥ a  then f x( )dx
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t→∞
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∫ provided the limit exists. 
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2) If  f x( )dx
t
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