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13 Differential Equations 
“… the answer to your question can best be expressed 
as a series of partial differential equations...” 

 

Castiel , Supernatural, Season 6, Episode 18 

A differential equation is a mathematical equation for an unknown function of one 
(ODE-Ordinal DE) or several (PDE-Partial DE) variables that relates the values of the 
function itself and its derivatives of various orders. Differential equations play a 
prominent role in engineering, physics, economics, biology, and other disciplines. 
Many real life processes can be described as differential equations. One of reasons is 
a way we learn about the process: we investigate a process by observing its change 
and a rate of the change.  In this course we present a quick survey of idea of 
differential equations in a nutshell.  

13.1  Modeling DE (7.1) 
13.1.1 Model of population growth 
Consider a population problem in ideal condition (unlimited environment and 
resources, no disease or predator). In such situation we may assume that the 
population growth is proportional to the population size. Since the rate of population 

growth is the first derivative of the population size this can be expressed as dP
dt

= kP , 

where k is the proportionality constant. If k>0 and initial population is >0 we have 
P ' t( ) > 0 , i.e. the population is always increasing, furthermore the P ' t( )  increases as 
the population increases.  

The solution to dP
dt

= kP  is exponential function, i.e. P t( ) = Cekt , note that 

P ' t( ) = k Cekt( ) = kP t( ) . The constant C is positive because the nature of the problem 

(negative population make no sense). We also consider t=0 as initial time and 
interested in t>0. Note thatP 0( ) = Cek⋅0 = C , so C is the initial population. 

Consider now more complicated model, where the population cannot grow above 
specific size M (due to limited resources, for example). In this case we look for 

P ' t( ) > 0  while P<M and P ' t( ) < 0  when P>M. Thus we got dP
dt

= kP 1− P
M

⎛
⎝⎜

⎞
⎠⎟ . This 



Course: Accelerated Engineering Calculus I Instructor: Michael Medvinsky 
 
equation is known as logistic equation, we will learn to solve it if we get to section 
7.5. 

Logistic DE have 2 equilibrium solutions P=0 and P=M, from which it never change. 
When P>M P ' t( ) < 0  for 0<P<M P ' t( ) > 0  as expected. 

13.1.2 Model of the motion of a spring 
By Hook’s Law, when we release a spring being stretched it exerts force =-kx, from 
the other side, by Newton’s Second Law, the force is mass times acceleration. Thus 

m d 2x
dt 2

= −kx⇒ d 2x
dt 2

= − k
m
x .  The second derivative if x is proportional to x with opposite 

sign, therefore x can be either sin t, cos t or their combination. The presence of 
trigonometric functions in the solution isn’t surprising, since the spring is supposed to 
oscillate about its equilibrium position. 

13.1.3 General DE 
In DE we consider y (y(x)) a dependent variable and x independent variable (since the 
equation should hold for any value of x). In many physical problems independent 
variable is time, therefore in DE’s it often named t, e.g. y’(t) = 3y(t). The order of DE 
is the highest derivative that occurs in equation, thus it can be formed as following: 

First order DE: y’=f(x,y) (read y’(x)=f(x,y(x)). 

Second order DE: y’’=f(x,y,y’) 

N’th order DE: y n( ) = f x, y, y ',..., y n−1( )( )   
Examples:  

-linear DE y 3( ) = ay '' x( ) + by ' x( ) + cy x( ) + d   

- non linear y '' = y2 x( )   

When we solve DE’s we often have a family of solution rather than a single solution, 
for example  

Ex 1. y ' = cos x  have infinite number of solutions sin x +C  one per a constant C.  
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In many physical (or so) problems we often need a particular solution that satisfies an 
initial condition y t0( ) = y0  or a set of IC y n( ) t0( ) = yn,0 . The number of initial condition 
is equal to order of DE. Such problem is called an initial value problem.  

Ex 2. Solve y '' = 0  with respect to initial conditions y 1( ) = 2, y ' 1( ) = 1 . From 
y '' = 0we learn that y is a line, i.e. y = ax + b , applying ICs one get 
y 1( ) = a ⋅1+ b = a + b = 2   and y ' 1( ) = b = 1⇒ a = 1, thus y = x +1(verify). 
Another useful sort of problems called boundary value problems, in this case 
some of conditions are given at the end point of interval of interest t1 . The total 
number of conditions is still equal to the order of DE. 

Ex 3. Solve y '' = 0  with respect to initial conditions y 0( ) = 1, y 1( ) = −1. We apply 
BC to y = ax + b to get y 0( ) = a ⋅0 + b = 1⇒ b = 1  and y 1( ) = a ⋅1+1= −1⇒ a = −2 , thus 
y = −2x +1 (verify). 

13.2  Direction Fields and Euler Method (7.2) 

Unfortunately, only certain DE’s can be solved in sense of obtaining explicit formula 
for the solution. Still we can learn a lot about the solution. 

13.2.1 Direction Fields 
DF is a method to sketch the 
solution to equation y ' = f x, y( ) , 
without solve it. Such, graph 
provide important information about 
solution’s behavior. Note, that we 
do not look at initial or boundary 
condition yet, means we looking at 
the family of solution to DE. The 
idea is to define a grid and to draw a 
non crossing little lines or arrows 
with a slope m = f x, y( )  at each grid 
point. The solution to particular 
problem y ' = f x, y( )  with IC 
y x0( ) = y0  is a thread on a DF graph. 

Ex 4. y ' = x − y   
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Ex 5. y ' = y2 − y − 2( ) 1− y( )2 = y − 2( ) y +1( ) 1− y( )2   

y < −1⇒ y ' > 0  (e.g. y = −2⇒ y ' = 36 ) 

−1< y <1⇒ y ' < 0  (e.g. y = 0⇒ y ' = −2 ) 

1< y < 2⇒ y ' < 0  (e.g. y = 1.5⇒ y ' = −0.31) 

y > 2⇒ y ' > 0  (e.g. y = 3⇒ y ' = 16 ) 

 

13.2.2 Euler Method 
Consider problem y ' = f t, y( )  with respect to IC y t0( ) = y0 . 

Let h = Δt , denote tn = t0 + nh , and y tn( ) = yn  , then we integrate both sides of the 

equation to get 
  

y ' t( )dt
tk

tk+1

∫ = f t, y t( )( )dt
tk

tk+1

∫ . Evaluating the integral of the left side one get 

  
y tk+1( )− y tk( ) = f t, y t( )( )dt

tk

tk+1

∫
 
or 

  
yk+1 = yk + f t, y t( )( )dt

tk

tk+1

∫
 
the last integral one solve using 

rectangular rule to get 
  
yk+1 = yk + tk+1 − tk( ) f tk , y tk( )( ) = yk + hf tk , yk( )  which is called 

Euler’ scheme or method. Different approximations of the integral lead to different 
schemes, but this is out of the scope of this course. 

Ex 6. Let solve
  

y ' = y
y 0( ) = 1

⎧
⎨
⎪

⎩⎪
 (the exact solution is xe ) 

The Euler method gives us ( ) ( )1 , 1n n n n n n ny y hf x y y hy y h+ = + = + = +   
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Ex 7. Use Euler method to approximate ( )1y  using 1,1/ 2h =  for ( )
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the analytical solution is 

 

( )21
2 1

te−+
, 

so
 ( ) ( )1

21 1 1/ 0.684y e= + ≈ . One learn from the 

example that in order to get precise result one need very small h. Further more, when 
we looking for y t1( )  where t1 >> t0  we will need many iterations to get good 
approximation.  

  


