

14 Infinite Sequences and Series

14.1 Sequences

Def: A **sequence** (or an **infinite sequence**) is a function $f: \mathbb{N} \rightarrow \mathbb{R}$ that often given as $f(n) = a_n$. We will often write sequences as $\{a_n\}_{n=1}^{\infty} = \{a_n\}_{n \in \mathbb{N}}$.

Def: A **subsequence** is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.

Ex 1. A constant sequence: $\{a_n\}_{n=1}^{\infty} = \{c\}_{n=1}^{\infty} = c, c, c, c, \dots$

Ex 2. Arithmetic sequence (progression): $\{a_n\}_{n=1}^{\infty} = \{a_0 + (n-1)d\}_{n=1}^{\infty} = a_0, a_0 + d, a_0 + 2d, \dots$

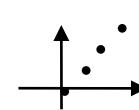
Ex 3. Geometric sequence (progression): $\{a_n\}_{n=1}^{\infty} = \{a_1 q^{n-1}\}_{n=1}^{\infty} = a_1, a_1 q, a_1 q^2, \dots$

Ex 4. Harmonic sequence: $\{a_n\}_{n=1}^{\infty} = \left\{ \frac{1}{n} \right\}_{n=1}^{\infty} = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$

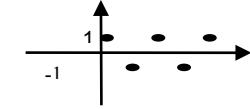
Ex 5. Subsequence of Harmonic sequence: $\{a_{2n}\}_{n=1}^{\infty} = \left\{ \frac{1}{2n} \right\}_{n=1}^{\infty} = \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \dots$

Graphical representation of sequence:

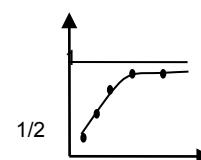
Ex 6. $\{n+1\} = 1, 2, 3, 4, \dots$



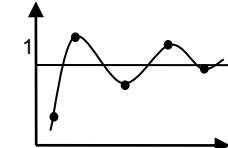
Ex 7. $\{(-1)^{n+1}\} = 1, -1, 1, -1, \dots$



Ex 8. $\left\{ \frac{n}{n+1} \right\} = \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$



Ex 9. $\left\{ 1 + \left(-\frac{1}{2} \right)^n \right\} = \frac{1}{2}, 1\frac{1}{4}, \frac{7}{8}, 1\frac{1}{16}, \dots$



Ex 10. Write the following sequence as $\{a_n\}_{n=1}^{\infty}$

a. $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \dots = \left\{ \frac{2n-1}{2n} \right\}_{n=1}^{\infty}$

b. $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \dots = \left\{ \frac{1}{3^n} \right\}_{n=1}^{\infty}$

Def: A sequence $\{a_n\}$ has a limit L , i.e. $\lim_{n \rightarrow \infty} a_n = L$ or $a_n \rightarrow L$ as $n \rightarrow \infty$ if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n \rightarrow \infty} a_n$ exists we say the sequence converges (convergent). Otherwise the sequence is diverges (divergent).

Ex 11. $\lim_{n \rightarrow \infty} (-1)^{n+1} = \text{DNE}$

Ex 12. $\lim_{n \rightarrow \infty} \left(1 + \left(-\frac{1}{2}\right)^n\right) = 1$

Ex 13.

Thm: If $\lim_{x \rightarrow \infty} f(x) = L$, then the sequence $f(n) = a_n$ is convergent and $\lim_{n \rightarrow \infty} a_n = L$

Ex 14. $\lim_{n \rightarrow \infty} n + 1 = \lim_{x \rightarrow \infty} x + 1 = \infty$

Ex 15. $\lim_{n \rightarrow \infty} \frac{n}{n+1} = \lim_{x \rightarrow \infty} \frac{x}{x+1} = 1$

Ex 16. $\lim_{n \rightarrow \infty} \frac{\ln n}{n} = \lim_{x \rightarrow \infty} \frac{\ln x}{x} \stackrel{\text{L'Hospital}}{=} \lim_{x \rightarrow \infty} \frac{1/x}{1} = 0$

Limits properties:

If a_n, b_n are convergent and c is constant then

1) $\lim_{n \rightarrow \infty} (a_n \pm b_n) = \lim_{n \rightarrow \infty} a_n \pm \lim_{n \rightarrow \infty} b_n$

2) $\lim_{n \rightarrow \infty} ca_n = c \lim_{n \rightarrow \infty} a_n$ including $\lim_{n \rightarrow \infty} c = c$

3) $\lim_{n \rightarrow \infty} (a_n b_n) = \lim_{n \rightarrow \infty} a_n \lim_{n \rightarrow \infty} b_n$

4) $\lim_{n \rightarrow \infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \rightarrow \infty} a_n}{\lim_{n \rightarrow \infty} b_n}$, $\lim_{n \rightarrow \infty} b_n \neq 0$

5) $\lim_{n \rightarrow \infty} a_n^p = \left(\lim_{n \rightarrow \infty} a_n \right)^p$, $p > 0, a_n > 0$

The squeeze theorem for sequences: If $a_n \leq b_n \leq c_n$ and $\lim_{n \rightarrow \infty} a_n = L = \lim_{n \rightarrow \infty} c_n$ then $\lim_{n \rightarrow \infty} b_n = L$

Absolute Value Theorem: $\lim_{n \rightarrow \infty} |a_n| = 0 \Rightarrow \lim_{n \rightarrow \infty} a_n = 0$ (Since $-|a_n| \leq a_n \leq |a_n|$)

Thm: If f is continuous function at L and $\lim_{n \rightarrow \infty} a_n = L$ then $\lim_{n \rightarrow \infty} f(a_n) = f\left(\lim_{n \rightarrow \infty} a_n\right) = f(L)$

$$\text{Ex 1. } \lim_{n \rightarrow \infty} \left(\frac{\pi}{2} + \left(-\frac{1}{2^n} \right) \right) = \frac{\pi}{2} \Rightarrow \lim_{n \rightarrow \infty} \sin \left(\frac{\pi}{2} + \left(-\frac{1}{2^n} \right) \right) = \sin \lim_{n \rightarrow \infty} \left(\frac{\pi}{2} + \left(-\frac{1}{2^n} \right) \right) = 1$$

$$\text{Ex 2. } \lim_{n \rightarrow \infty} \frac{1}{n} = 0 \Rightarrow f(x) = \frac{1}{x} \Rightarrow f\left(\frac{1}{n}\right) = n \Rightarrow \lim_{n \rightarrow \infty} f\left(\frac{1}{n}\right) = \lim_{n \rightarrow \infty} n = \infty = "f(0)"$$

Thm: If a sequence $\{a_n\}_{n=1}^{\infty}$ converges iff subsequences $\{a_{2n}\}_{n=1}^{\infty}$ and $\{a_{2n+1}\}_{n=1}^{\infty}$ does.

Thm: If a sequence $\{a_n\}_{n \in \mathbb{N}}^{\infty}$ converges iff all its subsequences converges.

Corollary: If there exists a divergent subsequence of $\{a_n\}_{n \in \mathbb{N}}^{\infty}$, then $\{a_n\}_{n \in \mathbb{N}}^{\infty}$ diverges.

Thm: $\lim_{n \rightarrow \infty} r^n = \begin{cases} 0 & -1 < r < 1 \\ 1 & r = 1 \end{cases}$, When $r > 1$ the sequence tends to infinity, and it doesn't exists when $r < -1$ (the last 2 are divergent sequences).

Def: A sequence $\{a_n\}$ is increasing if $a_n \leq a_{n+1}$ for all $n \geq 1$. It is called decreasing if it is $a_n \geq a_{n+1}$ for all $n \geq 1$. A sequence is monotonic if it is either increasing or decreasing.

Def: A sequence $\{a_n\}$ is bounded above if there is number M such that $a_n \leq M, \forall n \geq 1$. It is bounded below if there is number m such that $a_n \geq m, \forall n \geq 1$. If it is bounded above and below it called bounded sequence.

Thm: Every bounded, monotonic sequence is convergent.

Thm: If $\{b_n\}$ is a subsequence of sequence $\{a_n\}$ obtained by deletion of its first n_0 (finite number) terms. Then $\{a_n\}$ converges iff $\{b_n\}$ does.

Monotonicity tests: 1) $\text{sgn}(a_{n+1} - a_n)$ 2) Does $\frac{a_{n+1}}{a_n} < 1$ or $\frac{a_{n+1}}{a_n} > 1$?

Ex 3. $n \leq n+1 \Rightarrow 0 \leq \frac{n}{n+1} \leq 1$. Thus $\left\{ \frac{n}{n+1} \right\}$ is bounded and therefore convergent.

Ex 4. Check monotonicity of $(3+5n^2)/(n+n^2)$

$$\begin{aligned}
 a_{n+1} - a_n &= \frac{3+5(n+1)^2}{(n+1)+(n+1)^2} - \frac{3+5n^2}{n+n^2} = \frac{3+5(n^2+2n+1)}{(n+1)+(n^2+2n+1)} - \frac{3+5n^2}{n+n^2} = \frac{5n^2+10n+8}{n^2+3n+2} - \frac{3+5n^2}{n+n^2} = \\
 &= \frac{5n^2+10n+8}{(n+2)(n+1)} - \frac{3+5n^2}{n(n+1)} = \frac{5n^3+10n^2+8n-3n-5n^3-6-10n^2}{n(n+2)(n+1)} = \\
 &= \frac{5n-6}{n(n+2)(n+1)} > 0 \Rightarrow 5n-6 > 0 \Rightarrow n > \frac{6}{5}
 \end{aligned}$$

The other test:

$$\begin{aligned}
 \frac{a_{n+1}}{a_n} &= \frac{3+5(n+1)^2}{(n+1)+(n+1)^2} \frac{n+n^2}{3+5n^2} = \frac{3+5n^2+10n+5}{\cancel{(n+1)}(n+2)} \frac{n(\cancel{1+n})}{3+5n^2} = \frac{5n^3+10n^2+8n}{5n^3+10n^2+3n+6} > 1 \\
 \Leftrightarrow 8n &> 3n+6 \Leftrightarrow 5n > 6 \Leftrightarrow n > \frac{6}{5}
 \end{aligned}$$

Ex 5. Recursive sequences defined $a_1 = 10$, $a_{n+1} = (2 + a_n)/2$

$$a_1 = 10, a_2 = \frac{2+10}{2} = 6, a_3 = \frac{2+6}{2} = 4, \dots$$

$$L = \lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} a_{n+1} = \lim_{n \rightarrow \infty} \frac{2+a_n}{2} = 1 + \frac{1}{2} \lim_{n \rightarrow \infty} a_n = 1 + \frac{1}{2}L \Rightarrow L = 1 + \frac{1}{2}L \Rightarrow \frac{1}{2}L = 1 \Rightarrow L = 2$$

Ex 6. $\lim_{n \rightarrow \infty} \left(1 + \frac{6}{n}\right)^n = e^6$