

14.2 Series

Any rational number can be written as a finite sum of fractions: $0.123 = \frac{1}{10} + \frac{2}{10^2} + \frac{3}{10^3}$.

A real number can also be written as sum of fractions, but when the number is irrational the sum will be infinite: $\pi = 3 + \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \frac{9}{10^5} + \frac{2}{10^6} + \dots$

Def: A sum of infinite sequence $\{a_n\}_{n=1}^{\infty}$, $S = \sum_{j=1}^{\infty} a_j$ is called **(infinite) series**.

Def: In order to find a sum of infinite sequence $S = \sum_{j=1}^{\infty} a_j$ one defines a sequence of

partial sums as $\{S_n\}_{n=1}^{\infty} = \left\{ \sum_{j=1}^n a_j \right\}_{n=1}^{\infty}$. If the sequence is convergent then $S = \lim_{n \rightarrow \infty} S_n$ and the

series is called **convergent**. Otherwise the series is **divergent**.

$$\text{Ex 1. } \sum_{k=1}^{\infty} k = \lim_{n \rightarrow \infty} \sum_{k=1}^n k = \lim_{n \rightarrow \infty} \frac{n(n-1)}{2} = \infty$$

Ex 2. Compute $\sum_{k=1}^{\infty} \frac{1}{2^k}$. The partial sums are given as

$$\{S_n\} = \left\{ \sum_{k=1}^n \frac{1}{2^k} \right\} = \left\{ \frac{1}{2}, \frac{1}{2} + \frac{1}{4} = \frac{2+1}{4} = \frac{3}{4}, \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{4+2+1}{8} = \frac{7}{8}, \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{8+4+2+1}{16} = \frac{15}{16}, \dots, \frac{2^n - 1}{2^n} \right\}$$

so we need to computer $\lim_{n \rightarrow \infty} \frac{2^n - 1}{2^n} = \lim_{n \rightarrow \infty} \frac{2^x - 1}{2^x} \stackrel{L'Hospital}{=} \lim_{x \rightarrow \infty} \frac{2^x \ln 2}{2^x \ln 2} = 1 \Rightarrow \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$.

Ex 3. Compute $\sum_{k=1}^{\infty} \frac{1}{\sqrt{n^2 + k}}$. The partial sums are given as $S_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$, so we

need to computer $\lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$.

Note, $\lim_{n \rightarrow \infty} \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}} \neq \sum_{k=1}^n \lim_{n \rightarrow \infty} \frac{1}{\sqrt{n^2 + k}} = 0$ since n isn't finite.

$$1 \leftarrow \frac{n}{\sqrt{n^2+n}} = \sum_{k=1}^n \frac{1}{\sqrt{n^2+n}} \leq \sum_{k=1}^n \frac{1}{\sqrt{n^2+k}} \leq \sum_{k=1}^n \frac{1}{\sqrt{n^2+1}} = \frac{n}{\sqrt{n^2+1}} \rightarrow 1 \Rightarrow \lim \sum_{k=1}^n \frac{1}{\sqrt{n^2+k}} = 1$$

Ex 4. Geometric series: $\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \dots = \frac{a}{1-r}$ when $|r| < 1$, otherwise is divergent.

Ex 5. Telescopic series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1 - \frac{1}{n+1}$$

Thm: If $S = \sum_{n=1}^{\infty} a_n$ is convergent series, then

$$\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} (S_{n+1} - S_n) = \lim_{n \rightarrow \infty} S_{n+1} - \lim_{n \rightarrow \infty} S_n = S - S = 0$$

The converse theorem doesn't true, see example below.

Ex 6. A hyper harmonic series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for $p > 1$, e.g. $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. For

$p=1$, even though $\lim_{n \rightarrow \infty} \frac{1}{n} = 0$, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$ is diverges since

$$k \geq n \Rightarrow \frac{1}{n} \geq \frac{1}{k} \Rightarrow S_k = \sum_{n=1}^k \frac{1}{n} \geq \sum_{n=1}^k \frac{1}{k} = \frac{1}{k} \sum_{n=1}^k 1 = \frac{1}{k} (1 + 2 + \dots + k) = \frac{1}{k} \frac{k(k-1)}{2} = \frac{k-1}{2}$$

$$S = \lim_{k \rightarrow \infty} S_k \geq \lim_{k \rightarrow \infty} \frac{k-1}{2} = \infty$$

The test for Divergence: If $\lim_{n \rightarrow \infty} a_n \neq 0$ or DNE then $S = \sum_{n=1}^{\infty} a_n$ is divergent.

Ex 7. $\sum_{n=1}^{\infty} \frac{2^n}{3n+6}$ is diverges since $\lim_{n \rightarrow \infty} \frac{2^n}{3n+6} = \lim_{x \rightarrow \infty} \frac{2^x}{3x+6} = \lim_{x \rightarrow \infty} \frac{2^x \ln 2}{3} = \infty$

Thm: If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series, then so are the series $\sum_{n=1}^{\infty} ca_n$ (c is

constant) and $\sum_{n=1}^{\infty} (a_n \pm b_n)$. Furthermore: $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$.