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14.2 Series

Any rational number can be written as a finite sum of fractions:0.123 = 1,23
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A real number can also be written as sum of fractions, but when the number is
4 1 5 9

irrational the sum will be infinite: 7 = 3+i+—2+ T+t —5+i6+++
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Def: A sum of infinite sequence {a,} , S= Za is called (infinite) series.
j=1

Def: In order to find a sum of infinite sequenceS=> a, one defines a sequence of
j=1

partial sums as{s,}" {za } . If the sequence is convergent then §=1imS, and the
n=1
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series is called convergent. Otherwise the series is divergent.
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Ex 2. Compute Zzik . The partial sums are given as
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so we need to computer lim =lim = lim=—" =1=) —=1.
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Ex 3. Compute 2 \/_ The partial sums are given asS, = 21 , SO We
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need to computer lim>
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Note, limz; th =0 since n isn’t finite.
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Ex 4. Geometric series: Zar” =a+ar+ar’+..=—— when | ‘ <1, otherwise is
n=0 —-r
divergent.
Ex 5. Telescopic series

S| “(1 1 ) ( 1) (1 1) ( 1 1) (1 1 ) 1
D =) | ————|=|1—= |+| === |+... —— |+ == =1-—
n=ln(n+1) ‘m\n n+l 2 2 3 n—-1 n n n+l n+1

Thm: If S=) a, is convergent series, then
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w—S,)=1imS,,, —limS, =S—-S=0
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lima, = hm(S

The converse theorem doesn’t true, see example below.

Ex 6. A hyper harmonic series ZL converges for p>1, e.g. i :%. For
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p=1, even though lim L = 0, the harmonic serlesZ— = 1s diverges since
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The test for Divergence: If lima, #0 or DNE then S = Za is divergent.
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is diverges since lim =lim =lim =oo
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Thm: If Za and Zb are convergent series, then so are the series Y ca, (c is
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constant) and Z ). Furthermore: an —cZa and Z a, b :i
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