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Fundamental Theorem for Line Integrals(cont)

• Theorem: Suppose F=<P,Q> is a conservative vector field and P,Q has 
continuous first order partial derivatives on domain D, then

Proof: Let f be the potential, i.e.                                         , therefore
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Fundamental Theorem for Line Integrals(cont)

• Definitions:
1) A simply connected curve is a 
curve that doesn’t intersect itself between endpoints. 
2) A simple closed curve is a curve with                   but
for any                    .

3) A simply connected region: is a region D in which every simple 
closed curve encloses only points from D. In other words D consist of 
one piece and has no hole.
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Fundamental Theorem for Line Integrals(cont)

• Theorem: Let                be a vector field on an open simply connected 
region D. If P,Q  have continuous first order partial derivatives on 
domain D and           , then F is conservative.

• Example: Determine whether                             is conservative.
Solution: Not conservative, since 
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Fundamental Theorem for Line Integrals(cont)

• Example: Show that                                        and find the potential.

Solution:                                               , indeed F is conservative. 

• To find the potential start with                                                              

note that the constant of integration can be function of y. 

• To find g differentiate and compare to Q: 

to get                                               

• Finally, since any potential works, set const=0 to get  
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Green’s Theorem

• Definition: A simple closed curve is said to be positive oriented if it 
traversed counterclockwise.

Counterclockwise – positively oriented Clockwise – negatively oriented



Green’s Theorem(the theorem)

• Green’s Theorem: Let C be positively oriented piecewise-smooth, 
simple closed curve in the plane and let D be the region bounded by 
C. If P and Q have continuous partial derivatives on an open region 
that contains D, then

• Note: The circle on the line integral (  ) is sometime related to the 
positive oriented curve and sometime even drawn with an arrow on 
the circle:
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Green’s Theorem(cont)

• One views the Green’s theorem as a counterpart of Fundamental 
Theorem of Calculus

• Green’s theorem

• FTC theorem

• Notice that in both, the left side is on the domain while the right one 
is at the boundary of the domain.
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Green’s Theorem(proof)

Proof:

• Formulate D as domain of type I and show that

thus,  let                                               
and let                              , as depicted  

which is the same as 

• Similarly, one formulate D as domain of type II to show that
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Green’s Theorem(cont)

• Example: Let D be square              . Evaluate
Solution: Using Green’s theorem,  

• Verify
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Green’s Theorem(extensions)

• How to use Green’s theorem beyond its original formulation? 
• In the case when the curve C is not closed (but its line integral isn’t “nice”): 

• Connect the endpoints of C with any simple curve 𝐶1 to get 𝐶2 = 𝐶 ∪ 𝐶1

• Now,        can conveniently(?) be evaluated using Green’s theorem and 

• Hint: The best choice of 𝐶1 will make      easy. 

• In the case the region D has a hole, i.e. is not a simply connected.

• Rewrite D as union of simply connected regions (see example)

• Use the version of Green’s theorem for Union of Domains
(TBD on next slide)

1C
2 1C C C

= −  
2C

D1

D2



Green’s Theorem(extensions)

• Theorem: Let D be a domain. Rewrite D as union of 2subdomains, e.g.
, let                 and                , such that                  and                    , 
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Green’s Theorem(extensions)

• Example: Evaluate              .

• Solution: For a smart use of Green’s Theorem: choose any P and Q, 

such that                .

• For example                     , gives
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Green’s Theorem(extensions)

• Let C:                                    . Evaluate:

• Solution: reformulate the curve as                 or which  is a 

half circle, or in polar coordinates                                     . Connect the 

ends of the half circle with a line along x-axis, from 0 to 1.  
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Green’s Theorem(extensions)

• Example: Let C be a ring with radiuses 1 and 2 centered at the origin.
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Curl and Divergence

• Let F=<P,Q,R> be a vector field on . Assume that all partial 
derivatives of P,Q,R exists, then
• the curl of F is defined as

• the divergence of F is defined as
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Curl and Divergence(cont)

• Example: Let                        . Then                                            , 

curl 0 since 
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Curl and Divergence (cont)

• Theorem: Suppose f(x,y,z) has continuous second-order partial derivatives, 
then 

• Theorem: If F is vector field defined on     whose component functions have 
continuous partial derivatives and , then F is a conservative vector 
field.

• Theorem: Suppose F=<P,Q,R> is a vector field on and has continuous 
second-order partial derivatives, then 
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