Vector Calculus
 part II

By Dr. Michael Medvinsky, NCSU
online lectures 03/2020

Fundamental Theorem for Line Integrals(cont)

- Theorem: Suppose $F=<P, Q>$ is a conservative vector field and P, Q has continuous first order partial derivatives on domain D, then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Proof: Let f be the potential, i.e. $\langle P, Q\rangle=\mathbf{F}=\vec{\nabla} f=\left\langle f_{x}, f_{y}\right\rangle$, therefore

$$
f_{x y}=\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}=f_{y x}
$$

Fundamental Theorem for Line Integrals(cont)

- Definitions:

1) A simply connected curve is a

simple curves curve that doesn't intersect itself between endpoints.
2) A simple closed curve is a curve with $\vec{r}(a)=\vec{r}(b)$ but $\vec{r}\left(t_{1}\right) \neq \vec{r}\left(t_{2}\right)$
for any $a<t_{1}<t_{2}<b$.
3) A simply connected region: is a region D in which every simple closed curve encloses only points from D. In other words D consist of one piece and has no hole.

Simply connected
Non-simply connected

Fundamental Theorem for Line Integrals(cont)

- Theorem: Let $\mathbf{F}=\langle P, Q\rangle$ be a vector field on an open simply connected region D. If P, Q have continuous first order partial derivatives on domain D and $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$, then \mathbf{F} is conservative.
- Example: Determine whether $\mathbf{F}(x, y)=\langle x \sin y, y \sin x\rangle$ is conservative. Solution: Not conservative, since

$$
P_{y}=(x \sin y)_{y}=x \cos y \neq y \cos x=(y \sin x)_{x}=Q_{x}
$$

Fundamental Theorem for Line Integrals(cont)

- Example: Show that $\mathbf{F}(x, y)=\langle P, Q\rangle=\langle x+y, x-y\rangle$ and find the potential.

Solution: $P_{y}=(x+y)_{y}=1=(x-y)_{x}=Q_{x}$, indeed \mathbf{F} is conservative.

- To find the potential start with

$$
f(x, y)=\int f_{x}(x, y) d x=\int x+y d x=\frac{x^{2}}{2}+y x+g(y)
$$ note that the constant of integration can be function of y .

- To find g differentiate and compare to $Q: f_{y}=x+g^{\prime}(y)=x-y$ to get $g(y)=\int g^{\prime}(y) d x=-\int y d x=-\frac{y^{2}}{2}+$ const
- Finally, since any potential works, set const=0 to get

$$
f(x, y)=\frac{x^{2}}{2}+y x-\frac{y^{2}}{2}
$$

Green's Theorem

- Definition: A simple closed curve is said to be positive oriented if it traversed counterclockwise.

Counterclockwise - positively oriented

Green's Theorem(the theorem)

- Green's Theorem: Let C be positively oriented piecewise-smooth, simple closed curve in the plane and let \boldsymbol{D} be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$
\oint_{C} P d x+Q d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A
$$

- Note: The circle on the line integral (\oint) is sometime related to the positive oriented curve and sometime even drawn with an arrow on the circle: \oint

Green's Theorem(cont)

- One views the Green's theorem as a counterpart of Fundamental Theorem of Calculus
- Green's theorem

$$
\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A=\oint_{\partial D} P d x+Q d y
$$

- FTC theorem

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

- Notice that in both, the left side is on the domain while the right one is at the boundary of the domain.

Green's Theorem(proof)

Proof:

- Formulate D as domain of type I and show that $\oint_{\partial D} P d x=-\iint_{D} \frac{\partial P}{\partial y} d A$ thus, let $D=\left\{a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$ and let $C=C_{1} \cup C_{2} \cup C_{3} \cup C_{4}$, as depicted

$$
\begin{aligned}
& =\int_{a}^{b} P\left(x, g_{1}(x)\right) d x+\int_{b}^{b} P d x-\int_{a}^{b} P\left(x, g_{2}(x)\right) d x+\int_{\neq}^{a} P d x
\end{aligned}
$$

which is the same as $-\iint_{D} \frac{\partial P}{\partial y} d A=-\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \frac{\partial P}{\partial y} d y d x=\int_{a}^{b} \int_{g_{2}(x)}^{g_{1}(x)} \frac{\partial P}{\partial y} d y d x=\int_{a}^{b} P\left(x, g_{1}(x)\right)-P\left(x, g_{2}(x)\right) d x$

- Similarly, one formulate D as domain of type II to show that $\oint_{\partial D} Q d y=\iint_{D} \frac{\partial O}{\partial x} d A$

Green's Theorem(cont)

- Example: Let D be square $[0,2] \times[0,2]$. Evaluate $\oint_{i D}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$ Solution: Using Green's theorem,

$$
\begin{aligned}
& \oint_{\partial D} \underbrace{\left(x^{2}-x y^{3}\right)}_{P} d x+\underbrace{\left(y^{2}-2 x y\right)}_{Q} d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A=\iint_{D} \frac{\partial}{\partial x}\left(y^{2}-2 x y\right)-\frac{\partial}{\partial y}\left(x^{2}-x y^{3}\right) d A \\
& =\int_{0}^{2} \int_{0}^{2}-2 y+3 x y^{2} d x d y=\int_{0}^{2}\left(-2 x y+3 \frac{x^{2}}{2} y^{2}\right)_{0}^{2} d y=\int_{0}^{2}\left(-4 y+3 \frac{2^{z}}{\not 2} y^{2}\right)_{0}^{2} d y=\left(-2 y^{2}+2 y^{3}\right)_{0}^{2}=8
\end{aligned}
$$

- Verify $\oint_{\partial D}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y=\int_{\langle x, 0\rangle}+\int_{\langle 2, y\rangle}-\int_{\langle x, 2\rangle}-\int_{\langle 0, y\rangle}=$

Green's Theorem(extensions)

- How to use Green's theorem beyond its original formulation?
- In the case when the curve C is not closed (but its line integral isn't "nice"):
- Connect the endpoints of C with any simple curve C_{1} to get $C_{2}=C \cup C_{1}$
- Now, $\int_{C_{2}}$ can conveniently(?) be evaluated using Green's theorem and $\int_{C}=\int_{C_{2}}-\int_{C_{1}}$
- Hint: The best choice of C_{1} will make $\int_{C_{1}}$ easy.
- In the case the region D has a hole, i.e. is not a simply connected.
- Rewrite D as union of simply connected regions (see example)
- Use the version of Green's theorem for Union of Domains (TBD on next slide)

Green's Theorem(extensions)

- Theorem: Let D be a domain. Rewrite D as union of 2 subdomains, e.g. $D=D_{1} \cup D_{2}$, let $\partial D=C_{1} \cup C_{2}$ and $C_{3}=D_{1} \cap D_{2}$, such that $\partial D_{1}=C_{1} \cup C_{3}$ and $\partial D_{2}=C_{2} \cup\left(-C_{3}\right)$, then
$\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A=\oint_{C_{1} \cup C_{3}} P d x+Q d y+\oint_{C_{2} \cup\left(-C_{3}\right)} P d x+Q d y$

$$
=\oint_{C_{1}} P d x+Q d y+\oint_{C_{2}} P d x+Q d y=\oint_{C_{1} \cup C_{2}} P d x+Q d y
$$

Green's Theorem(extensions)

- Example: Evaluate $A=\iint_{D} d A$.
- Solution: For a smart use of Green's Theorem: choose any P and Q, such that $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$.
- For example $P=0, Q=x$, gives

$$
A=\iint_{D} d A=\oint_{\partial D} x d y
$$

Green's Theorem(extensions)

- Let C: $\vec{r}(t)=\left\langle t, \sqrt{t-t^{2}}\right\rangle, t \in[0,1]$. Evaluate: $\oint_{C} \underbrace{\left(e^{x} \sin y-y^{2}+x\right)}_{P} d x+\underbrace{\left(e^{x} \cos y-\cos y^{2}\right)}_{Q} d y$
- Solution: reformulate the curve as $y=\sqrt{x-x^{2}}$ or $y^{2}+x^{2}=x$ which is a half circle, or in polar coordinates $r=\cos \theta, 0 \leq \theta \leq \pi / 2$. Connect the ends of the half circle with a line along x-axis, from 0 to 1.
$\oint_{C} P d x+Q d y=\oint_{C u C_{1}} P d x+Q d y-\oint_{C_{1}} P d x+Q d y=\iint_{R} Q_{x}-P_{y} d A-\oint_{\langle x, 0\rangle} P d x+Q d y=\frac{1}{6}-\frac{1}{2}=-\frac{1}{3}$
$\iint_{R} Q_{x}-P_{y} d A=\iint_{R} e^{x} \cos y-\left(e^{x} \cos y-2 y\right) d A=\iint_{R} 2 y d A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos \theta} 2 r \sin \theta \cdot r d r d \theta=\frac{1}{6}$
$\oint_{\langle x, 0\rangle} P d x+Q d y^{=0}=\int_{0}^{1}\left(e^{t} \sin 0-0^{2}+t\right) \frac{d}{d t} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}$

Green's Theorem(extensions)

- Example: Let C be a ring with radiuses 1 and 2 centered at the origin.

$$
\begin{aligned}
& \oint_{C}{\underset{P}{3}}_{y^{3}} d x+x^{3} d y=\iint_{D_{1}}-3 x_{Q_{x}}-\underset{P_{y}}{ }-3 y^{2} d A+\iint_{D_{2}}-{\underset{Q}{x}}-3 x^{2}-3 y^{2} d A \\
& =-3 \int_{0}^{2 \pi} \int_{1}^{2} r^{3} d r d \theta=-\left.3 \cdot 2 \pi \frac{r^{4}}{4}\right|_{1} ^{2}=-\frac{45}{2} \pi
\end{aligned}
$$

Curl and Divergence

- Let $\mathrm{F}=\left\langle P, Q, R>\right.$ be a vector field on \mathbb{R}^{3}. Assume that all partial derivatives of P, Q, R exists, then
- the curl of \mathbf{F} is defined as

$$
\operatorname{curl} \mathbf{F}=\vec{\nabla} \times \mathbf{F}=\operatorname{det}\left(\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right)=\left\langle\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right\rangle
$$

- the divergence of \mathbf{F} is defined as

$$
\operatorname{div} \mathbf{F}=\vec{\nabla} \cdot \mathbf{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\langle P, Q, R\rangle=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

Curl and Divergence(cont)

- Example: Let $f(x, y, z)=x \sin y z$. Then $\mathbf{F}=\vec{\nabla} f=\langle\sin y z, x z \cos y z, x y \cos y z\rangle$,

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\langle\sin y z, x z \cos y z, x y \cos y z\rangle \\
& =0+\left(-x z^{2} \sin y z\right)+\left(-x y^{2} \sin y z\right)=-x\left(y^{2}+z^{2}\right) \sin y z
\end{aligned}
$$

and $\operatorname{curl} \mathbf{F}=0$ since

$$
\begin{aligned}
& \frac{\partial R}{\partial y}=x \cos y z-x y z \sin y z=\frac{\partial Q}{\partial z}, \\
& \frac{\partial P}{\partial z}=y \cos y z=\frac{\partial R}{\partial x}, \text { and } \\
& \frac{\partial Q}{\partial x}=z \cos y z=\frac{\partial P}{\partial y}
\end{aligned}
$$

Curl and Divergence (cont)

- Theorem: Suppose $f(x, y, z)$ has continuous second-order partial derivatives, then

$$
\operatorname{curl}(\nabla f)=\operatorname{curl}\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle f_{z y}-f_{y z}, f_{x z}-f_{z x}, f_{y x}-f_{x y}\right\rangle=0
$$

- Theorem: If \mathbf{F} is vector field defined on \mathbb{R}^{3} whose component functions have continuous partial derivatives andcurl $\mathbf{F}=0$, then \mathbf{F} is a conservative vector field.
- Theorem: Suppose $F=<P, Q, R>$ is a vector field on and has \mathbb{R}^{3} continuous second-order partial derivatives, then

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=\operatorname{div}\left\langle\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)=\left(\frac{\partial^{2} R}{\partial x \partial y}-\frac{\partial^{2} Q}{\partial x \partial z}\right)+\left(\frac{\partial^{2} P}{\partial y \partial z}-\frac{\partial^{2} R}{\partial y \partial x}\right)+\left(\frac{\partial^{2} Q}{\partial z \partial x}-\frac{\partial^{2} P}{\partial z \partial y}\right)=0
$$

