Extra Assignment

1 vectors and vector functions

- 1. Given $\vec{v}_1 = \langle 1, 3, 4 \rangle$ and $\vec{v}_2 = \langle \pi, e, 7 \rangle$, find
 - (a) the distance from v_1 to v_2 ,
 - (b) $v_1 \cdot v_2$ and $v_1 \times v_2$,
 - (c) the (parametric) equation for a line through the points (1, 3, 4) and $(\pi, e, 7)$,
 - (d) the equation for the plane containing the points (1, 3, 4), $(\pi, e, 7)$ and the origin.
- 2. Calculate the circumference of a circle by parametrizing the circle and using the arc length formula.

2 derivatives and optimization

- 1. Find an equation for the tangent plane to the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$ at the point $p = (a/\sqrt{3}, b/\sqrt{3}, c/\sqrt{3})$.
- 2. Find the local maximums and minimums of $f(x, y) = \sin(x)\sin(y)$ for $0 \le x \le \pi$ and $0 \le y \le \pi$.
- 3. Let $f(x, y) = 4 x^2 y^2$. Find points on the ellipse *E* defined by $x^2/4 + y^2 = 1$ where *f* is a maximum and where *f* is a minimum.
- 4. Let $f(x, y) = 4 x^2 y^2$. Find points in the region D defined by $x^2/4 + y^2 \le 1$ where f is a maximum and where f is a minimum.

3 double and triple integrals

- 1. Use triple integral to find volume of given solid.
 - (a) The solid enclosed by the cylinder $x^2+y^2 = 9$ and the planes y+z=5 and z=1
 - (b) The solid enclosed by the paraboloid $x = z^2 + y^2$ and the plane x = 16
- 2. Write integrals which give the following (no need to evaluate):
 - (a) the center of mass of the region contained in the ellipsoid $x^2/a^2+y^2/b^2+z^2/c^2 = 1$ which is below the z-axis, assume density is constant.
 - (b) the volume of the region which is contained in both the cylinder of radius 2 centered on the z-axis and the sphere of radius 5 centered at the origin.
 - (c) the average value of the function $f(x, y, z) = x^2y + z$ over the region W, where W is the part of the unit sphere with $x \ge 0$ and $y \ge 0$.

4 vector calculus

- 1. Calculate the following line integrals $\int_C \phi(\vec{r}) \cdot d\vec{r}$:
 - (a) $\phi(x, y) = xy\mathbf{i} + y^2\mathbf{j}$ and C is the piece of the parabola $y = x^2$ which goes from the origin to the point (1, 1).

 - (c) $\phi = -y^3 \mathbf{i} + x^3 \mathbf{j}$ and C is the unit circle (use a theorem...).
- 2. For each of the following vector fields Φ , decide whether or not they are conservative. If they are, find a function F so that $\nabla F = \Phi$:
 - (a) $\Phi(x,y) = xy^2\mathbf{i} + xy\mathbf{j}$.
 - (b) $\Phi(x, y, z) = 2xy^2 z^2 \mathbf{i} + 2x^2 y z^2 \mathbf{j} + 2x^2 y^2 z \mathbf{k}.$
 - (c) $\Phi(x, y, z) = 3x^2y^2z\mathbf{i} + 2x^3yz\mathbf{j} + 3x^2y^2\mathbf{k}.$
- 3. Calculate the divergence and curl of the previous vector fields. Recall the relationship between curl and whether or not a vector field is conservative.
- 4. Calculate the flux $\int_C \Phi \cdot \vec{n} ds$ of the following vector fields:
 - (a) $\Phi = 2y^2 \mathbf{i} + x^2 \mathbf{j}$ and C is the part of the unit circle going from (1,0) to (0,1).
 - (b) $\Phi = x^3 y^2 \mathbf{i} \sin(y) \mathbf{j}$, and C is the rectangle formed by lines at x = -2, x = 1, y = 1, y = 3 (use a theorem...).
 - (c) $\Phi = x^2 \mathbf{i} + y^2 \mathbf{j}$ and C is the unit circle.
- 5. Evaluate the surface integral $\iint_{S} y dS$ where S is helicoid with vector equation $r(u,v) = \langle u \cos v, u \sin v, v \rangle$, $0 \leq u \leq 1$, $0 \leq v \leq \pi$
- 6. Verify that Stoke's Theorem is true for given verctor field F and surface S
 - (a) **F**=<-*y*,*x*,-2>, and *S* is the cone $z^2=x^2+y^2$, $0 \le z \le 4$ oriented downward
 - (b) $\mathbf{F} = \langle y, z, x \rangle$, and *S* is the hemisphere $x^2 + y^2 + z^2 = 0$, $y \ge 0$ oriented in the direction of the positive *y*-axis.
- 7. Verify that the Divergence theorem is true for the vector field \mathbf{F} on the region E

(a) $\mathbf{F} = \langle 3x, xy, 2xz \rangle$, and *E* is the cube bounded by the planes x=0, x=1, y=0, y=1, z=0 and z=1.

- (b) $\mathbf{F} = \langle x^2, -y, z \rangle$, and *E* is the solid cylinder $x^2 + z^2 \leq 9$, $0 \leq x \leq 2$.
- 8. The Fundamental Theorem of Calculus always says roughly: Given a region R whose boundary is B, the integral (i.e. a normal integral, line integral, surface integral, multiple integral) of "something" (i.e. a function, 2D vector field, 3D vector field) over B is equal to the integral of "the derivative of that something" (i.e. the regular derivative, the gradient, the curl, or the divergence) over R. The different theorems we saw in **last part of the course** are all of this form, its just that the something, the integral, and the derivative all take various different forms. Write out each of the fundamental theorems seen in chapters 6 and 7, as well as the standard fundamental theorem from last semester, and in each, say what kind of region R you have, what its boundary B looks like, what types of integrals you're calculating, and what the derivative means.