Handout 2

Microsoft Mathematics: a software for 3D visualization - useful tool http://www.microsoft.com/en-us/download/details.aspx?id=15702

Definition: Vector is mathematical object that specify length/magnitude and direction. We denote a vector by putting a little over on the top, or sometime in books by using bold font. $\vec{a}, \vec{u}, \vec{v}$ or a, u, v. We write a vector as a list of numbers in angle brackets $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ or $\langle\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\rangle$.

Denote $\overrightarrow{A B}$ a vector from point A to point B. One sketches $\overrightarrow{A B}$ as a line segment with an arrow that point in the direction of the vector. However, the vector considered as a numerical quantity that doesn't represent the locations of A and B, but the location of point B relative to A as if A were the coordinate origin. Thus, vectors are position-less and therefore:

Definition: two vectors considered equivalent if their magnitude \backslash length and direction is equal, regardless the position. Similarly $\left\langle\boldsymbol{x}_{1}, \boldsymbol{y}_{1}, \boldsymbol{z}\right\rangle=\left\langle\boldsymbol{x}_{2}, \boldsymbol{y}_{2}, \boldsymbol{z}_{2}\right\rangle$ $\left\langle x_{1}, y_{1}\right\rangle=\left\langle x_{2}, y_{2}\right\rangle$ iff $x_{1}=x_{2}, y_{1}=y_{2}, z_{1}=z_{2}$.
Definition: A vector from point $A\left(x_{1}, y_{1}, z_{1}\right)\left(\tilde{A}\left(x_{1}, y_{2}\right)\right)$ to point $B\left(x_{2}, y_{2}, z_{2}\right)($
$\left.\tilde{B}\left(x_{2}, y_{2}\right)\right)$ is denoted as $\overrightarrow{A B}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle\left(\tilde{A} \tilde{B}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle\right)$

Vector Arithmetic

Let $\vec{a}=\left\langle\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\rangle, \overrightarrow{\boldsymbol{b}}=\left\langle\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right\rangle, \overrightarrow{\boldsymbol{c}}=\left\langle\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right\rangle, \overrightarrow{\boldsymbol{d}}=\left\langle\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right\rangle$ be a vectors and k a constant. In order to distinct vectors and numbers we will call k a scalar.

Definition: Defined the length or a magnitude of 2D, 3D vectors $\overrightarrow{\boldsymbol{a}}, \overrightarrow{\boldsymbol{c}}$ respectively by $\|\vec{a}\|=\sqrt{a_{1}^{2}+a_{2}^{2}}$ and $\overrightarrow{\boldsymbol{c}}=\sqrt{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}}$ respectively.

Definition: The unit vector is a vector with magnitude \backslash length equal 1.

Definition: Scalar Multiplication defined as $\boldsymbol{k a}=\left\langle\boldsymbol{k} \boldsymbol{a}_{1}, \boldsymbol{k a _ { 2 }}\right\rangle$ and $\boldsymbol{k c}=\left\langle\boldsymbol{k} c_{1}, \boldsymbol{k c _ { 2 }}, \boldsymbol{k} \boldsymbol{c}_{\mathbf{3}}\right\rangle$. If $\mathrm{k}<0$ then the vector change direction. Note also that

$$
\begin{aligned}
& \|k \vec{a}\|=\sqrt{k^{2} a_{1}^{2}+k^{2} a_{2}^{2}}=|k| \sqrt{a_{1}^{2}+a_{2}^{2}}=|k|\|\vec{a}\| \text { and } \\
& \|k \vec{c}\|=\sqrt{k^{2} c_{1}^{2}+k^{2} c_{2}^{2}+k^{2} c_{3}^{2}}=|k| \sqrt{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}}=|k|\|\vec{c}\|
\end{aligned}
$$

Thus scalar multiplication scales (either stretch or squeeze) vector magnitude \backslash length.

Note: Every vector \mathbf{u} can be converted into a unit vector by multiplying it by very special scalar equal to reciprocal of its magnitude: $\left\|\frac{1}{\|\vec{u}\|} \vec{u}\right\|=\left\lvert\, \frac{1}{\|\vec{u}\|}\|\vec{u}\|=\frac{\|\vec{u}\|}{\|\vec{u}\|}=1\right.$.
Definitino: Vector Addition defined as $\vec{a}+\vec{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}\right\rangle$ and $\overrightarrow{\boldsymbol{c}}+\overrightarrow{\boldsymbol{d}}=\left\langle\boldsymbol{c}_{1}+\boldsymbol{d}_{1}, \boldsymbol{c}_{2}+\boldsymbol{d}_{2}, \boldsymbol{c}_{3}+\boldsymbol{d}_{3}\right\rangle$. The addition of vectors can be understood geometrically as as a Triangle Law or a Parallelogram Law, which are illustrated below.

Definition: Vector Subtraction defined by
 $\vec{u}-\vec{v}=\vec{u}+(-\vec{v})$ where $-\vec{v}$ is the vector with the same magnitude but opposite direction $\overrightarrow{\boldsymbol{v}}$.

Properties of vectors:

1. $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
2. $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
3. $\vec{a}+\overrightarrow{0}=\vec{a}$
4. $\vec{a}+(-\vec{a})=\overrightarrow{0}$
5. $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$
6. $(k+m) \vec{a}=k \vec{a}+m \vec{a}$
7. $(k m) \vec{a}=k(m \vec{a})$

Standard basis (i-j-k notations)

We define 3 very important vectors, called a Standard Basis:
$\mathbf{i}=\langle\mathbf{1}, \mathbf{0}, \mathbf{0}\rangle ; \quad \mathbf{j}=\langle\mathbf{0}, \mathbf{1}, \mathbf{0}\rangle ; \quad \mathbf{k}\langle\mathbf{0 , 0 , 1}\rangle$ in 3D or equivalently $\mathbf{i}=\langle\mathbf{1 , 0}\rangle ; \quad \mathbf{j}=\langle\mathbf{0}, \mathbf{1}\rangle$
in 2D.

Theorem: Every vector can be expressed as a sum of vectors of the standard basis as following

$$
\begin{aligned}
&\left\langle a_{1}, a_{2}, a_{3}\right\rangle= a_{1}\langle 1,0,0\rangle+a_{2}\langle 0,1,0\rangle+a_{3}\langle 0,0,1\rangle=a_{1} i \\
&\left\langle a_{1}, a_{2}\right\rangle=a_{2} j+a_{3} k \\
&1,0\rangle+a_{2}\langle 0,1\rangle=a_{1} i+a_{2} j
\end{aligned}
$$

