1

Match the vector fields with plots

1. $F(x, y, z)=3 i+2 j+z k$.
2. $F(x, y, z)=x i+y j+z k$.
3. $F(x, y, z)=3 i+j+3 k$.
4. $F(x, y, z)=x i+y j+k$.

2

Determine if vectors are conservative and find a potential function if possible.

1. $F(x, y)=\left(2 x y+y^{2}\right) \vec{i}+\left(x^{2}+2 x y\right) \vec{j}$.
2. $F(x, y)=x e^{x y} \vec{i}+y e^{x y} \vec{j}$.
3. $F(x, y)=\left(3 x^{2}+\frac{1}{\sqrt{x}}\right) \vec{i}-(1-2 \sqrt{x}) \vec{j}$

3

Evaluate the following integrals.

1. $\int_{C} x e^{y} d s$ with C is a line segment from $(0,2)$ to $(3,5)$.
2. $\int_{C} z^{2} d x+x^{2} d y+y^{2} d z$ with C is a line segment from $(2,0,0)$ to $(3,1,2)$.
3. $\int_{C} x y z d s$ with C: $x=2 \sin t, y=1, z=-2 \cos t$, and $0 \leq t \leq \pi$.
4. $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left\langle y^{2}, x^{2}-4\right\rangle$ and C is $y=(x-1)^{2}, x \in[0,3]$.
5. $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\langle 3, x y-2 x\rangle$ and C is the top half of the circle centered at the origin with radius 5 .

4

Use Green's Theorem to evaluate the following integrals

1. $\int_{C}\left(y^{4}-2 y\right) d x-\left(6 x-4 x y^{3}\right) d y$, with C starts from $(0,0)$ to $(1,0)$ to $(1,2)$.
2. $\int_{C} x y^{2} d x-x^{2} y d y$, and C is the area between 2 circles centered at the origin and radius 2 and radius 3 with positive orientation (counter clock-wise).
3. $\int_{C}\left(y^{3}+y\right) d x+\left(x^{2} y+3 x y^{2}\right) d y$, and C is the area bounded by $y=1$ and $y=x^{2}$ with positive orientation (counter clock-wise). (Solve the line integral and the double integral forms and confirm that they are the same.)
